期刊文献+

一类四阶弹性梁方程正解的存在唯一性 被引量:2

Existence and uniqueness of positive solutions to a class of fourth-order elastic beam equations
在线阅读 下载PDF
导出
摘要 研究了一类四阶两点边值问题正解的存在唯一性。首先通过Laplace变换求出相应的Green函数G(t,s)并讨论了相关性质;然后,通过将方程右边简化为算子方程的方法,利用几个经典的不动点定理得到了该问题正解的存在唯一性;最后,给出了迭代方法和一个数值例子。本研究求解Green函数的方法更加直观易懂,且迭代方法更易实现。 In this paper,we studied the existence and uniqueness of positive solutions to a class of fourth-order two-point nonlinear boundary value problems.Firstly,by using the Laplace transform,we worked out the corresponding Green function and discussed some properties.Then,by reducing the boundary value problem to operator equation for right-hand side function and using some classical fixed point theorems,we obtained the results about the existence and uniqueness of the positive solution.Finally,we gave an iterative method and a numerical example.The proposed method of solving Green function is more intuitive and easier to understand,and the iterative method is easier to implement.
作者 韦孝东 白占兵 WEI Xiaodong;BAI Zhanbing(College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China)
出处 《山东科技大学学报(自然科学版)》 CAS 北大核心 2021年第3期89-95,共7页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(11571207) 山东科技大学研究生创新项目(SDKDYC170343)。
关键词 梁方程 LAPLACE变换 不动点定理 正解 迭代方法 beam equations Laplace transform fixed point theorem positive solution iterative method
  • 相关文献

参考文献5

二级参考文献34

  • 1Yao Qingliu (Dept.of Appl.Math.,Nanjing University of Finance and Economics,Nanjing 210003).SOLVABILITY OF SINGULAR CANTILEVER BEAM EQUATION[J].Annals of Differential Equations,2008,24(1):93-99. 被引量:4
  • 2姚庆六,李永祥.一类非线性悬臂梁方程解的存在性[J].云南大学学报(自然科学版),2006,28(4):277-280. 被引量:6
  • 3姚庆六.Positive solutions of nonlinear elastic beam equations with a fixed end and a movable end[J].Journal of Harbin Institute of Technology(New Series),2006,13(5):545-548. 被引量:3
  • 4姚庆六.非线性悬臂梁方程解的一个存在定理[J].中国石油大学学报(自然科学版),2007,31(1):159-162. 被引量:2
  • 5Gupta C P. Existence and Uniqueness Theorems for the Bending of an Elastic Beam Equation. Applicable Anal., 1988, 26:289-304.
  • 6Agarwal R P, O'Regan D. Right Focal Singular Boundary Value Problems. Z. Angew. Math. Mech., 1999, 79:363-373.
  • 7Agarwal R P, O'Regan D, Lakshmikantham V. Singular (p, n - p) Focal and (n, p) Higher order Boundary Value Problems. Nonlinear Anal., 2000, 42:215-228.
  • 8Agaxwal R P, O'Regan D. Twin Solutions to Singular Boundary Value Problems. Proc. Amer. Math. Soc., 2000, 128:2085-2094.
  • 9Agaxwal R P. Multiplicity Results for Singular Conjugate, Focal and (n, p) Problems. J. Differential Equations, 2001, 170:142-156.
  • 10Ma Ruyun. Multiple Positive Solutions for a Semipositone Fourth-order Boundary Value Problem. Hiroshima Math. J., 2003, 33:217'-227.

共引文献11

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部