期刊文献+

改进的和声搜索算法求解多目标优化问题 被引量:3

Improved Harmony Search Algorithms for Multiobjective Optimization Problems
在线阅读 下载PDF
导出
摘要 针对和声搜索算法在求解多目标问题时效率不高、易陷入局部最优、在算法后期收敛精度不够等不足。提出一种改进的多目标和声搜索算法,其思想是通过引入自适应操作,加强算法的全局搜索能力,增加解的多样性;同时对解集根据Pareto最优解进行非支配排序,提高算法效率,增加算法在后期的收敛精度。在数值仿真实验中选取4个测试函数进行实验,并同其他算法进行多方面比较,结果表明该算法具有更好的性能。 Aiming at the shortcomings of harmony search algorithm in solving multi-objective problems,such as low efficien⁃cy,easy to fall into local optimum,inadequate convergence accuracy in the later stage of the algorithm,etc,an improved multi-ob⁃jective harmony search algorithm is proposed in this paper.The idea is that by introducing adaptive operation,the global search abil⁃ity of the algorithm is enhanced and the diversity of solutions is enriched.At the same time,non-dominated sorting of solution sets is carried out according to Pareto optimal solution to improve the efficiency of the algorithm and increase the convergence accuracy of the algorithm in the later period.Four test functions are selected in numerical simulation experiments and compared with other al⁃gorithms in many aspects.The results show that the algorithm has better performance.
作者 谷培义 高尚 GU Peiyi;GAO Shang(School of Computer Science and Engineering,Jiangsu University of Science and Technology,Zhenjiang 212000)
出处 《计算机与数字工程》 2021年第6期1132-1136,共5页 Computer & Digital Engineering
关键词 多目标优化 和声搜索算法 PARETO最优 multi-objective optimization harmony search algorithm Pareto optimality
  • 相关文献

参考文献7

二级参考文献57

  • 1李亮,王玉杰,王秋生,孙平.土坡稳定分析中模拟任意滑动面的新策略及其效率分析[J].水利学报,2008,39(5):535-541. 被引量:14
  • 2Li Qinghua Yang Shida Ruan Youlin.A Hybrid Algorithm for Optimizing Multi-Modal Functions[J].Wuhan University Journal of Natural Sciences,2006,11(3):551-554. 被引量:1
  • 3陈国良,王熙法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,2003.
  • 4Geem Z W, Kim J H, Loganathan G V. A New Heuristic Optimization Algorithm: Harmony Search[J]. Simulation, 2001, 76(2): 60-80.
  • 5Mahdavi M, Fesanghary M, Damangir E. An Improved Harmony Search Algorithm for Solving Optimization Problem[J]. Applied Mathematics and Computation, 2007, 188(2): 1567-1579.
  • 6Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II[J]. IEEE Trans. on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7Zitzler E, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multi-objective Optimization[Z]. Zurich, Switzerland: Computer Engineering and Networks Laboratory, 2001.
  • 8Coello C A, Pulido G T, Lechuga M S. Handing Multiple Objectives with Particle Swarm Optimization[J]. IEEE Trans. on Evolutionary Computation, 2004, 8(3): 256-279.
  • 9Zhou Aimin, Jin Yaochu. Combing Model-based and Generics- based Offspring Generation for Multi-objective Optimization Using a Convergence Criterion[C]//Proc. of Congress on Evolutionary Computation. [S. l.]: IEEE Press, 2006: 3234-3241.
  • 10Wang Yaonan, Wu Lianghong, Yuan Xiaofang. Multi-objective Self-adaptive differential Evolution with Elitist Archive and Crowding Entropy-based Diversity Measure[J]. Soft Computing, 2010, 14(3): 193-209.

共引文献46

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部