期刊文献+

无网格稳定配点法及其在弹性力学中的应用 被引量:7

Meshfree stabilized collocation method in elasticity
在线阅读 下载PDF
导出
摘要 伽辽金型无网格法具有精度高、稳定性好的优点,但是实现高阶准确积分过程复杂,计算效率低。配点型无网格法的计算效率高,但是其在求解复杂问题时往往会出现精度和稳定性较差的结果。本文介绍一种新的无网格法-无网格稳定配点法,采用重构核近似作为近似函数,在规则子域内非常容易实现高阶准确积分,既保留了配点型无网格法效率高的特点,又具备伽辽金型无网格法精度高和稳定性好的特点,而且还兼具有限体积法满足局域离散方程守恒的特点。通过弹性力学算例验证了该算法的优越性,未来可将其进一步应用于流体和流固耦合问题分析。 Galerkin-type meshfree methods have the advantages of high accuracy and good stability,but the process of achieving high-order accurate integration is complicated,which results in the low efficiency of such methods.The collocation-type meshfree methods have high computational efficiency,but they often suffer from poor accuracy and stability when solving complex problems.Therefore,this paper introduces a new meshfree method-meshfree stabilized collocation method.In this method,the reproducing kernel function is utilized as the approximation function.Regular subdomains are established to achieve the high-order accurate integration.This method not only possesses the high efficiency as the direct collocation method,but also has the high accuracy and good stability as the Galerkin-type meshfree methods.Besides,it is also characterized by satisfying the conservation of local discrete equations as the finite volume method.Several examples of elasticity problems are presented to verify the superiority of the proposed method.It can be further applied to fluid and fluid-structure interaction problems in the future.
作者 王莉华 刘义嘉 钟伟 钱志浩 WANG Li-hua;LIU Yi-jia;ZHONG Wei;QIAN Zhi-hao(School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China)
出处 《计算力学学报》 CAS CSCD 北大核心 2021年第3期305-312,共8页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11972261,11572229)资助项目.
关键词 无网格稳定配点法 重构核近似 精度 稳定性 效率 meshfree stabilized collocation method reproducing kernel function accuracy stability efficiency
  • 相关文献

参考文献4

二级参考文献31

  • 1程玉民,李九红.弹性力学的复变量无网格方法[J].物理学报,2005,54(10):4463-4471. 被引量:41
  • 2李聚轩,龙驭球.广义协调元方法的收敛性[J].工程力学,1996,13(1):75-80. 被引量:31
  • 3赵光明,宋顺成.几何非线性分析的无网格伽辽金算法[J].计算力学学报,2006,23(4):487-491. 被引量:2
  • 4Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments[J]. Computer Methods in Applied Mechanics and Engi- neering, 1996,139(1) : 3-47.
  • 5Atluri S N, Shen S P. The Meshless Local Petrov Galerkin (MLPG) Method[M]. Tech Science Press, 2002.
  • 6Li S, Liu W K, Mesh free Particle Methods [M]. Springer, 2004.
  • 7Liu G R. Mesh free Methods: Moving Beyond the Finite Element Method ( 2na Edition ) [ M]. CRC Press, 2009.
  • 8Chen J S,Chi S W,Hu H Y. Recent developments in stabilized Galerkin and collocation meshfree methods [J]. Computer Assisted Mechanics and Engineering Sciences ,2011,18(1) : 3-21.
  • 9Nayroles B, Touzot G, Villon P. Generalizing the fi- nite element method: diffuse approximation and dif- fuse elements[J]. Computational Mechanics, 1992,10 (5):307-318.
  • 10Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994,37 (2) : 229-256.

共引文献27

同被引文献37

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部