期刊文献+

二维材料及其范德瓦尔斯异质结的高压响应研究进展

Pressure Engineering in Two-Dimensional Materials and vdWs Heterostructures
在线阅读 下载PDF
导出
摘要 高压技术是一种高效、连续、可逆的调控材料结构、电学、光学等物理特性的手段,因此利用压强工程在材料中实现超导态、制备超硬材料等成为高压领域的研究热点。不同于传统的三维体相材料,二维材料及其异质结中独特的层间耦合作用使其具有许多不同于传统材料的物理特性,且这些物理特性极易受到外场影响和调控,使得高压物理成功地拓展到低维材料领域。本文以石墨烯、黑磷、六方氮化硼和过渡金属二硫族化合物等几种典型的二维材料及其异质结为例,概述了二维材料及异质结在高压调控下的结构、电学、声子动力学、光学等方面的响应,并简要讨论这些高压调控下的二维材料在未来电子、光电器件等领域应用的潜力。 Pressure engineering,as an efficient,continuous and reversible method in tuning structure,electric and optical properties,has been extensively used in study of materials.Two-dimensional materials and vdWs heterostructures exhibit intriguing physical properties,thanks to their interlayer coupling,a unique degree of freedom.These interlayer-coupling-mediated properties are extremely sensitive to external perturbations,in particular external pressure,which can effectively tune interlayer spacing and thus modulate interlayer coupling strength.In this article,we review the responses to applied pressure in several representative two-dimensional materials(graphene,black phosphorus,h-BN,transition metal dichalcogenides and vdWs heterostructures).A plethora of phenomena are observed,including pressureinduced phase transition,structural instability,phonon dynamics,metallization,superconductivity etc.Opportunities in designing next-generation functional devices based on pressure engineering in these twodimensional materials and heterostructures are also discussed.
作者 裴胜海 邓晴阳 王曾晖 夏娟 PEI Shenghai;DENG Qingyang;WANG Zenghui;XIA Juan(Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610054,Sichuan,China)
出处 《高压物理学报》 CAS CSCD 北大核心 2021年第3期1-15,共15页 Chinese Journal of High Pressure Physics
基金 国家重点研发计划(2019YFE0120300,2018YFE0115500) 国家自然科学基金(62004026,61774029,62004032) 四川省科技厅应用基础研究计划(2021YJ0517,21CXTD0088,2019YFSY0007,2019JDTD0006)。
关键词 二维材料 范德瓦尔斯异质结 高压 two-dimensional materials van der Waals heterostructures high pressure
  • 相关文献

参考文献3

二级参考文献29

  • 1Novoselov K, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I and Firsov A 2004 Science 306 666.
  • 2Zeng F, Zhang W B and Tang B Y 2015 Chin. Phys. B 24 097103.
  • 3Wang Y Y, Quhe R G, Yu D P and Lti J 2015 Chin. Phys. B 24 087201.
  • 4Feng B J, Li W B, Qiu J L, Cheng P, Chen L and Wu K H 2015 Chin. Phys. Lett. 32 037302.
  • 5Hultgren R, Gingrich N S and Warren B E 1935 J. Chem. Phys. 3 351.
  • 6Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372.
  • 7Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tominek D and Ye P D 2014 ACS Nano 8 4033.
  • 8Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Ozyilmaz B 2014AppL Phys. Lett. 104 103106.
  • 9Li L K, Ye G J, Tran Vy, Fei R X, Chen G R, Wang H C, Wang J, Watanabe K, Taniguchi T, Yang L, Chert X H and Zhang Y B 2015 Nat. Nanotechnol. 10 608.
  • 10Gillgren N, Wickramaratne D, Shi Y M, Espiritu T, Yang J W, Hu J, Wei J, Liu X, Mao Z Q, Watanabe K, Taniguchi T, Bockrath M, Barlas Y, Lake R K and Lau C N 2015 2D Materials 2 011001.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部