期刊文献+

菠菜主根离散元建模方法与试验验证 被引量:4

Discrete Element Modeling Method and Experimental Verification of Spinach Main-root
在线阅读 下载PDF
导出
摘要 研究根土复合体铲切过程可以获得铲切力并优化铲切结构等参数。为准确仿真根系的切割过程,利用离散元法建立了颗粒粘结的蔬菜根简化模型。以成熟期的菠菜主根为试验材料,利用WDW-5E型微机控制电子式万能试验机进行菠菜主根的物理特性试验,得到菠菜主根的力学性能参数,即峰值剪切力为31.2N、轴向峰值压缩力为113.8N。结合离散元颗粒接触模型本构方程,得出相关粘结参数值,即法向刚度系数为5.7×10^(6)N/m、切向刚度系数为3.6×10^(6)N/m,临界法向应力为1.95 MPa,临界切向应力为4.2MPa,粘结半径为0.8mm。利用上述参数建立了根系离散元粘结模型,进行虚拟试验与实际物理试验对比分析,结果表明:两者在根系剪切力的变化趋势和压缩表观特征参数上具有一致性。因此,证明本文方法可以应用于菠菜根模型建立,对根土复合模型的建立及铲刀的优化设计等具有一定的参考意义。 Study the cutting process of root-soil complex models can obtain parameters such as cutting force and optimize cutting structure. In order to simulate the root cutting process accurately, this paper uses the discrete element method to establish a simplified model of vegetable root. The spinach roots in the mature period are used as the experimental materials. The physical properties of spinach main root were tested by WDW-5 E microcomputer controlled electronic universal testing machine. The mechanical performance parameters of the spinach roots are obtained: the peak shear force is 31.2 N, and the axial peak compression force is 113.8 N. Combined with the constitutive equation of the discrete element particle contact model, the relevant bonding parameters are obtained: the normal stiffness coefficient is 5.7×10^(6)N/m, the tangential stiffness coefficient is 3.6×10^(6) N/m, the critical normal stress is 1.95 MPa, the critical tangential stress is 4.2 MPa, and the bonding radius is 0.8 mm. The discrete element model is established and bonded. The virtual test is carried out on that and compared with the actual physical test, and the results show that the DEM can be applied to the establishment of spinach root model. This study has certain reference significance for the establishment of root-soil composite model and the optimal design of blade.
作者 李金光 刘雪美 邹亮亮 尹然光 杨坤 苑进 Li Jinguang;Liu Xuemei;Zou Liangliang;Yin Ranguang;Yang Kun;Yuan Jin(College of Mechanical and Electrical Engineering,Shandong Agricultural University,Tai’an 271018,China;Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment,Tai’an271018,China)
出处 《农机化研究》 北大核心 2021年第8期181-185,191,共6页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(51675317) 国家重点研发计划项目(2017YFD0701103-3)。
关键词 叶菜采收 物理特性试验 离散元 vegetable harvesting physical property test discrete element method
  • 相关文献

参考文献8

二级参考文献95

  • 1宋占华,肖静,张世福,李玉道,杜现军,李法德.曲柄连杆式棉秆切割试验台设计与试验[J].农业机械学报,2011,42(S1):162-167. 被引量:42
  • 2李恒,李腾飞,高扬,王红英,李保明.基于离散元法的多层刮板式清粪机仿真优化[J].农业机械学报,2013,44(S1):131-137. 被引量:8
  • 3王秀,赵春江,孟志军,陈立平,潘瑜春,薛绪掌.精准变量施肥机的研制与试验[J].农业工程学报,2004,20(5):114-117. 被引量:94
  • 4耿端阳,张铁中.直动双挡销式分钵落苗系统设计[J].吉林大学学报(工学版),2005,35(5):495-499. 被引量:4
  • 5夏萍,印崧,陈黎卿,朱德泉,李兵.收获机械往复式切割器切割图的数值模拟与仿真[J].农业机械学报,2007,38(3):65-68. 被引量:30
  • 6Zhang Naiqian, Wang Maohua, Wang Ning, Precision agriculture--a worldwide overview [ J]. Computers and Electronics in Agriculture, 2002, 36(2/3) : 113 - 132.
  • 7McBratney Alex, Brett Whelan, Tihornir Ancev, et al. Future directions of precision agriculture[ J]. Precision Agriculture, 2005, 6(1): 7-23.
  • 8Yuan Jin, Liu Chengliang, Li Yanming, et al. Gaussian processes based bivariate control parameters optimization of variable-rate granular fertilizer applicator[ J]. Computers and Electronics in Agriculture, 2010, 70( 1 ) : 33 -41.
  • 9Torbett J C, Roberts R K, Larson J A, et al. Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming [ J]. Computers and Electronics in Agriculture, 2008, 64(2) : 140 -148.
  • 10Ortega R A, Munoz R E, Acosta L E,et al. Optimization model for variable rate application in extensive crops in Chile : the effects of fertilizer distribution within the field[ C ]//Proceedings of the 7th European Federation for Information Technology in Agriculture Conference, 2009 : 489 - 495.

共引文献262

同被引文献62

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部