期刊文献+

基于复合腔的单纵模589nm激光器 被引量:2

Single Longitudinal Mode 589nm Laser in Composite-cavity
在线阅读 下载PDF
导出
摘要 介绍了一种LD泵浦Nd:YVO_4和Nd:YAG的单纵模589 nm激光器。1 064 nm与1 319 nm的基频光通过"L"型复合谐振腔获得同时振荡,通过Ⅱ类相位匹配切割的KTP晶体腔内和频以及由布鲁斯特片和KTP组成的双折射滤波器的选频,获得了单纵模589 nm连续激光器。利用琼斯矩阵方法分析了两个基频光的S偏振和P偏振光通过双折射滤波器时的损耗。结果表明:1 064 nm和1 319 nm次纵模的损耗分别比峰值透射率纵模的损耗大0.5%和2%以上。以此为基础,在实验上实现了一种单纵模589 nm激光器,其最大输出功率为58 mW,功率稳定性优于0.36%,线宽约为30 MHz。双折射滤波器方法对双波长振荡及和频激光器实现单纵模输出是一种有效的方法。 A laser-diode pumped Nd:YVO4 and Nd:YAG single-longitudinal-mode 589 nm laser is presented.The fundamental waves of 1064 nm and 1319 nm simultaneously oscillate through an L type composite resonator.Through intracavity sum-frequency-generation in a KTP crystal(cut at type II phase matching),the single longitudinal mode 589 nm continuous wave is obtained by a birefringent filter which is consisted of a Brewster plate and the KTP crystal.The losses of S-and P-elements of the two fundamental waves are calculated by Jones matrix method.The losses of the first sub-longitudinal modes for 1064 nm and 1319 nm are 0.5%more and 2%more than their peak transmission modes respectively.Based on the above mentioned,a single-longitudinal-mode 589 nm laser is realized in experiment.The maximum output power is 58 mW,the amplitude fluctuation is less than 0.36%,and the line width is about 30 MHz.The results show that the birefringent filter technology is effective for single-longitudinalmode double-wavelength oscillation and sum-frequency-generation lasers.
作者 杨飞 李萌萌 高兰兰 YANG Fei;LI Mengmeng;GAO Lanlan(College of Science,Changchun University of Science and Technology,Changchun 130022,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2021年第5期95-101,共7页 Acta Photonica Sinica
基金 Jilin Province Department of Education“13th five-year”Science and Technology Research Planning Project(No.JJKH20190552KJ)。
关键词 激光 和频 双折射滤波器 单纵模 连续波 复合腔 Laser Sum-frequency-generation Birefringent filter Single-longitudinal-mode Continuous wave Composite resonator
  • 相关文献

参考文献5

二级参考文献82

  • 1檀慧明,高兰兰,吕彦飞.激光二级管泵浦KTP腔内和频激光器及噪声特性的分析[J].光学精密工程,2004,12(5):459-464. 被引量:11
  • 2Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2008 Opt. Express 16 18684.
  • 3Mimoun E, Sarlo L D, Zondy J-J, Dalibard J, Gerbier F 2010 Appl. Phys. B 99 31.
  • 4Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219.
  • 5Fugate R Q, Denman C A, Hillman P D, Moore G T, Telle J M, LaRue I A D, Drummond J D Spinhirne J M 2004 Proc. of SPIE 5490 1010.
  • 6Yan Z A, Hu X, Guo S Y, Cheng Y Q 2009 Proc. of SPIE 7382 738232.
  • 7R Q Fugate 1991 Nature 353 144.
  • 8耿爱丛, 薄勇, 毕勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭林, 王桂玲, 崔大复, 许祖彦 2006 物理学报 55 5227.
  • 9Moosmuller H, Vance J D 1997 Opt. Lett. 22 1135.
  • 10Xie S, Bo Y, Xu J, Shen Y, Wang P, Wang Z, Yang F, Peng Q, Cui D Zhang J Xu Z 2011 Appl. Phys. B 102 781.

共引文献11

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部