期刊文献+

知识图谱推理:现代的方法与应用 被引量:4

Knowledge graph reasoning:modern methods and applications
在线阅读 下载PDF
导出
摘要 知识图谱推理技术旨在根据已有的知识推导出新的知识,是使机器智能具有和人类一样的推理和决策能力的关键技术之一。系统地研究了知识图谱推理的现代方法,以统一的框架介绍了向量空间中进行知识图谱推理的模型,包括基于几何运算嵌入欧几里得空间和双曲空间的方法,基于卷积神经网络、胶囊网络、图神经网络等深度网络模型的方法。同时,系统地梳理了知识推理技术在各技术领域和各行业的应用情况,指出了当前存在的挑战以及其中蕴含的机会。 Knowledge reasoning over knowledge graph aims to discover new knowledge according to the existing knowledge.It is a pivotal technology to realize the human reasoning and decision-making ability of machine.The modern methods of knowledge reasoning over knowledge graph were studied systematically.And the methods based on vector representations with a unified framework were introduced,including the methods based on embedding into Euclidean space and hyperbolic space,and based on deep learning methods such as convolution neural network,capsule network,graph neural network,etc.Simultaneously,the applications of knowledge reasoning in various technical fields and industries were presented,and the existing challenges and opportunities were pointed out as well.
作者 王文广 WANG Wenguang(DataGrand Inc.,Shanghai 201203,China)
出处 《大数据》 2021年第3期42-59,共18页 Big Data Research
关键词 知识推理 双曲空间嵌入 几何运算 胶囊网络 图神经网络 knowledge reasoning hyperbolic space embedding geometric operation capsule network graph neural network
  • 相关文献

参考文献6

二级参考文献166

  • 1Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 2Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 3Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 4Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 5Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 6Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 7Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 8Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 9Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.
  • 10Zhao Y, Liu Z, Sun M. Representation learning for measuring entity relatedness with rich information [C] //Proc of IJCAI. San Francisco, CA: Morgan Kaufmann, 2015: 1412-1418.

共引文献309

同被引文献37

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部