期刊文献+

基于近似模型和遗传算法的等离子喷焊工艺参数多目标优化 被引量:4

Multi-objective Optimization of Plasma Spray Welding Process Parameters Based on Approximation Model and Genetic Algorithm
在线阅读 下载PDF
导出
摘要 为了对等离子喷焊工艺参数进行优化,提高喷焊层的质量,通过径向基函数(radical basis function,RBF)神经网络近似模型和非支配排序遗传算法(non dominated sorting genetic algorithmⅡ,NSGA-Ⅱ)遗传算法相结合的方法,对等离子喷焊试验数据,基于MATLAB平台进行训练,以此来构建显微硬度、磨损量和稀释率的近似模型,利用NSGA-Ⅱ遗传算法对模型进行下一步的多目标优化,最终得到帕累托最优解集,研究了工艺参数间的交互作用。结果表明:利用RBF-NSGA-Ⅱ遗传算法比响应面法能更显著地提高喷焊层质量。可见对等离子喷焊工艺的优化具有一定的参考价值。 To optimize the processing parameters of plasma spray welding and improve the quality of the spray welding layer,by combining radical basis function(RBF)neural network approximation model with non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)genetic algorithm,the plasma spray welding test data were trained based on MATLAB platform,on which the approximate model for the microhardness,wear amount,and dilution rate was constructed.The multi-objective optimization of the model in the next step was carried out by using NSGA-Ⅱgenetic algorithm.Finally,the Pareto optimal solution set was obtained,and the interaction among the process parameters was studied.Experimental results show that the RBF-NSGA-Ⅱgenetic algorithm can improve the quality of spray welding layer more significantly than the response surface method.This study has a certain reference value for the optimization of plasma spray welding process.
作者 刘永姜 李俊杰 曹一明 曾艾婧 LIU Yong-jiang;LI Jun-jie;CAO Yi-ming;ZENG Ai-jing(Shanxi Key Laboratory of Advanced Manufacturing Technology,North University of China,Taiyuan 030051,China)
出处 《科学技术与工程》 北大核心 2021年第11期4403-4408,共6页 Science Technology and Engineering
基金 先进制造技术山西省重点实验室开放基金(XJZZ201806)。
关键词 多目标优化 等离子喷焊 神经网络 遗传算法 响应面法 multi-objective optimization plasma spray welding neural network genetic algorithm response surface method
  • 相关文献

参考文献7

二级参考文献79

共引文献88

同被引文献33

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部