期刊文献+

基于分层学习的改进PSO算法求解复杂优化问题 被引量:6

Particle Swarm Optimization Algorithm Based on Hierarchical Learning for Complex Optimization Problem
在线阅读 下载PDF
导出
摘要 针对社会学习粒子群算法存在的收敛速度慢及进化后期种群多样性缺失等问题,提出了一种基于分层学习的改进粒子群算法。首先,引入分层学习策略,并将其加入社会学习粒子群算法中,实现对种群中不同状态粒子的差别对待,从而增强算法中粒子的探索与开发能力;其次,对个体设定贡献值度量,在贡献值的基础通过减少种群数量,减少计算资源的浪费。最后,使用CEC2010测试函数集对所提算法进行测试,并与5种典型算法进行对比,验证了所提算法的有效性。 In order to solve the problems of social learning particle swarm optimization,such as slow convergence speed and loss of population diversity in late evolution,a particle swarm optimization algorithm based on hierarchical learning is proposed.Firstly,the hierarchical learning strategy is introduced and added to the social learning particle swarm optimization algorithm to realize the differential treatment of different state particles in the population,so as to enhance the exploration and exploitation ability of particles.Secondly,the contribution strategy was designed to avoid the waste of computing resources by reducing the population number.Finally,the algorithm was tested on the CEC2010 benchmark function.The effectiveness of the proposed algorithm is demonstrated by comparing with five algorithms.
作者 白晓慧 何小娟 孙超利 张国晨 BAI Xiao-hui;HE Xiao-juan;SUN Chao-li;ZHANG Guo-chen(Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《太原科技大学学报》 2021年第3期169-174,共6页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金(61876123) 山西省自然科学基金(201801D121131) 山西省优秀人才科技创新项目(201805D 211028) 山西省留学回国人员科技活动择优资助项目 太原科技大学校博士启动基金(20162029)。
关键词 大规模优化问题 粒子群算法 分层学习策略 贡献值策略 large-scale optimization problem particle swarm optimization hierarchical learning strategy contribution strategy
  • 相关文献

参考文献4

二级参考文献24

  • 1高春能,张彪,纪志成.基于自适应动态搜索粒子群的SVM参数优化研究[J].系统仿真学报,2015,27(12):2958-2964. 被引量:10
  • 2胡家声,郭创新,叶彬,段惠明,曹一家.离散粒子群优化算法在输电网络扩展规划中的应用[J].电力系统自动化,2004,28(20):31-36. 被引量:42
  • 3王俊年,申群太,沈洪远,周鲜成.基于多种群协同进化微粒群算法的径向基神经网络设计[J].控制理论与应用,2006,23(2):251-255. 被引量:19
  • 4翟明岳,曾庆安.低压电力线通信信道的马尔柯夫特性研究[J].中国电机工程学报,2007,27(22):116-121. 被引量:25
  • 5Carlisle A,Dozier G.An off-the-shelf PSO[C]//Proceedings of the Workshop on Particle Swarm Optimization,Indianapolis,IN,2001.
  • 6Kennedy J,Barnhart R.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks,IEEE Neural Networks Council,1995:1942-1948.
  • 7Kennedy J.Stereotyping:improving particle swarm performance with cluster analysis[C]//Proceedings of the IEEE International Conference on Evolutionary Computation,IEEE Neural Networks Council,2000,2:303-308.
  • 8Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization[C]//Lecture Notes in Computer Science 1447:Evolutionary Programming Ⅶ,1998:591-600.
  • 9Parsopoulos K E,Vrahatis M N.Initializing the particle swarm optimizer using the nonlinear simplex method[M]//Grmela A,Mastoraltis N E.Advances in Intelligent Systems,Fuzzy Systems,Evolutionary Computation.[S.l.]:WSEAS Press,2000:216-221.
  • 10Fan S K S,Zahara E.A hybrid simplex search and particle swarm optimization for unconstrained optimization[C]//Proceedings of the 32nd International Conference on Computers and Industrial Engineering,University of Limerick,Ireland,2003.

共引文献36

同被引文献65

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部