摘要
[目的]本文旨在快速测定植物体内叶绿素含量,以提高无损测定叶绿素的准确性。[方法]以绿萝叶片为研究对象,提出一种串联融合高光谱特征与纹理特征的叶绿素SPAD值的无损检测方法。采集320片绿萝叶片样本在400~900 nm波段的光谱信息,使用Savitzky-Golay卷积平滑对原始高光谱图像进行预处理,利用连续投影算法(successive projections algorithm,SPA)选取出10个特征波段,对绿萝叶片高光谱图像中的RGB图像采用灰度共生矩阵算法(gray-level co-occurrence matrix,GLCM)提取其纹理特征,采用串联方法融合高光谱特征与纹理特征得到融合特征,分别建立单一特征和融合特征的误差反向传输人工神经网络(back propagation artificial neural network,BPANN)和支持向量机回归(support vector machine regression,SVR)模型。[结果]单一使用特征光谱数据或图像纹理数据作为特征值建立的预测模型,综合性能不稳定;基于串联融合特征的预测模型准确率有明显提升。基于串联融合特征的SVR模型具有最佳的预测结果,校正集决定系数R2为0.9612,预测集决定系数R2为0.9571。[结论]高光谱特征与纹理特征的融合特征可以提高叶绿素回归预测模型的准确性,为叶绿素含量无损检测提供了重要参考。
[Objectives]The main goal of the article is to quickly obtain the chlorophyll content in plants and improve the accuracy of non-destructive measurement of chlorophyll.[Methods]Taking the leaves of Epipremnum aureum as the research object,a non-destructive detection method of chlorophyll SPAD value combining hyperspectral and texture features in series was proposed,the spectral information of 320 leaf samples of E.aureum in the wavelength range(400-900 nm)was collected,original hyperspectral image was preprocessed by Savitzky-Golay convolution smoothing,and 10 characteristic wavelengths were selected through successive projections algorithm(SPA);At the same time,gray-level co-occurrence matrix(GLCM)was used to extract texture features of RGB images in hyperspectral images;Finally,the concatenation method was used to fuse the hyperspectral feature and the texture feature to obtain the fusion feature.The back propagation artificial neural network(BPANN)and the support vector machine regression(SVR)models of single feature and fusion feature were established respectively.[Results]The test results showed that the prediction model established by using feature spectrum data or image texture data as feature values alone had unstable comprehensive performance and that the accuracy of the prediction model based on series fusion features had been significantly improved.The SVR model established after fusing features had the best prediction result,the correction set decision coefficient R2 was 0.9612,and the prediction set decision coefficient R2 was 0.9571.[Conclusions]This study proves that the fusion of hyperspectral features and texture features can improve the accuracy of the chlorophyll regression prediction model,and provides an important reference for the non-destructive detection of chlorophyll content.
作者
闫明壮
王浩云
吴媛媛
曹雪莲
徐焕良
YAN Mingzhuang;WANG Haoyun;WU Yuanyuan;CAO Xuelian;XU Huanliang(College of Information Science and Technology,Nanjing Agricultural University,Nanjing 210095,China)
出处
《南京农业大学学报》
CAS
CSCD
北大核心
2021年第3期568-575,共8页
Journal of Nanjing Agricultural University
基金
国家自然科学基金项目(31601545)
江苏省重点研发计划项目(L201704)
中央高校基本科研业务费专项资金(KYLH202006)
大学生创新创业训练计划专项(S20190025)。
关键词
绿萝
叶绿素SPAD值
高光谱特征
纹理特征
特征融合
Epipremnum aureum
chlorophyll SPAD value
hyperspectral features
texture feature
fusion features