期刊文献+

ACSF2启动子区c.-751 A>C突变影响扬州鹅产蛋性能作用机制研究 被引量:1

The research on the mechanism of the effect of c.-751 A>C mutation in ACSF2 promoter on egg-laying performance of Yangzhou goose
在线阅读 下载PDF
导出
摘要 [目的]本试验旨在研究酰基辅酶A合成酶家族成员2(ACSF2)基因启动子区突变c.-751 A>C与扬州鹅产蛋性能的相关性,并分析该突变位点对基因表达的调控作用。[方法]利用等位基因特异PCR(AS-PCR)在343个扬州鹅个体中对c.-751 A>C位点进行基因型分析,并与产蛋性能关联分析;利用荧光定量PCR(qPCR)和荧光素酶表达载体检测AA型和CC型启动子活性差异;通过ACSF2过表达试验分析该基因对颗粒细胞能量代谢途径及鹅产蛋性能的影响。[结果]AA基因型个体产蛋性能显著优于CC基因型个体(P<0.05),与AC基因型个体的产蛋性能没有显著差异;qPCR结果表明AA基因型个体卵巢组织中ACSF2基因mRNA表达量显著低于CC基因型个体(P<0.01);荧光素酶表达载体的转录活性检测结果同样表明AA型启动子活性显著低于CC型。在扬州鹅卵泡颗粒细胞中过表达ACSF2基因,参与能量代谢的基因表达发生显著变化,ATP浓度显著升高(P<0.01),暗示ACSF2能够调控颗粒细胞内的能量代谢途径。[结论]ACSF2启动子区c.-751 A>C变异能够改变该基因的表达水平,并通过改变颗粒细胞能量代谢来影响扬州鹅的产蛋量。该突变位点可作为扬州鹅产蛋性能选育的分子标记。 [Objectives]This study aimed to verify the correlation between the c.-751 A>C in ACSF2(encoded by acyl-CoA synthetase family member 2)promoter and laying performance of Yangzhou goose,and analyze the effect of the SNP on ACSF2 expression.[Methods]We used allele specific PCR(AS-PCR)to analyze the genotype of SNP c.-751 A>C in a 343 Yangzhou geese population,and performed the correlation analysis between genotype and laying performance of Yangzhou goose.Quantitative real-time PCR(qPCR)and luciferase reporter gene vector were used to detect the difference between AA and CC promoter activity.ACSF2 over-expression was performed to analyze its role in the energy metabolism of granulosa cells and laying performance.[Results]Genotyping and association analysis results showed that the egg numbers of geese with AA genotype were significantly higher than those CC ones.Quantitative real-time PCR analysis indicated that AA individuals showed lower ACSF2 expression level in ovary tissues.Moreover,the overexpression experiment indicated that ACSF2 was involved in the energy metabolism of granulosa cells.[Conclusions]We identified a functional mutation in the promoter region of ACSF2 affecting gene expression in Yangzhou goose,and indicated the role of ACSF2 in laying performance by regulating energy metabolism of granulosa cells.Our results provide insight into the improvement of goose laying performance by ACSF2 genetic variation selection.
作者 王秋实 汪琴 韦伟 张鑫宝 夏梦圆 张立凡 陈杰 WANG Qiushi;WANG Qin;WEI Wei;ZHANG Xinbao;XIA Mengyuan;ZHANG Lifan;CHEN Jie(College of Animal Science and Technology,Nanjing Agricultural University,Nanjing 210095,China)
出处 《南京农业大学学报》 CAS CSCD 北大核心 2021年第3期533-540,共8页 Journal of Nanjing Agricultural University
基金 江苏省农业重大新品种创制项目(PZCZ201738)。
关键词 ACSF2 SNP 启动子 扬州鹅 产蛋性能 ACSF2 SNP promoter Yangzhou goose laying performance
  • 相关文献

参考文献1

二级参考文献18

  • 1Wolfe AJ. The acetate switch. Microbiology and Molecular Biology Reviews, 2005, 69 : 12-50.
  • 2Winzeler EA, Shoemaker DD, Astromoff A, Liang H Anderson, K Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, E1 Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pal C, Rebischung C, Revueha JL, Riles L, Roberts C J, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW.. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 1999, 285:901-906.
  • 3Paradise EM, Kirby J, Ro DK, Keasing JD. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9 : 160-168.
  • 4Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metabolic Engineering, 2009.
  • 5Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metabolic Engineering, 2008, 10:201-206.
  • 6Akamatsu S, Kamiya H, Yamashita N, Motoyoshi T, Goto-Yamamoto N, Ishikawa T, Okazaki N, Nishimura A. Effects of aldehyde dehydrogenase and acetyl-CoA synthetase on acetate formation in sake mash. Journal Bioscience Bioengineering, 2000, 90:555-560.
  • 7Gao L, Chiou W, Tang H, Cheng XH, Camp HS, Burns DJ. Simultaneous quantification of malonyl-CoA and several other short-chain acyl-CoAs in animal tissues by ion-pairing reversed-phase HPLC/MS. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2007, 853:303-313.
  • 8vandenBerg MA, deJongGubbels P, Kortland C J, vanDijken JP, Pronk JT, Steensma HY. The two acetyl- coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. Journal of Biological Chemistry 1996, 271: 28953 -28959.
  • 9Sato K, Yoshida Y, Hirahara T, Ohba T. On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. Journal Bioscience Bioengineering, 2000, 90:294-301.
  • 10Postgate J. Viability measurements and the survival of microbes under minimum stress. Advances Microbial Physiology, 1967, 1.

共引文献15

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部