摘要
为了解决光幕探测能力不足的问题,提出了一种基于原向反射原理的大靶面光幕探测方法,根据探测系统的测量原理,建立了灵敏度分布模型,揭示了探测系统的灵敏度分布规律。进行了仿真与实验,仿真与实验结果均表明:随着弹丸过幕坐标与入射角逐渐增大,系统探测灵敏度逐渐下降;随着弹丸直径逐渐增大,系统探测灵敏度随之增强。在设定的参数条件下,当靶面为4 m×4 m时,系统可对直径6 mm及其以上的弹丸探测,指标要求探测捕获率不小于98%,目前实验中还未发现漏测情况,可以实现全靶面有效探测;建立的探测灵敏度分布模型对工程实践具有指导意义。
To improve the detection ability of light screen measurement system,a method of light screen with a large detection area based on the principle of original reflection was proposed.The measurement principle of the detection system was introduced,the sensitivity distribution model was established,the sensitivity distribution characteristics of the detection system was revealed,and simulation and experiment were carried out.Simulation and experiment results show that the detection sensitivity of the system decreases with the increase of the projectile’s coordinates x′and y′and the incidence angleαn,and the sensitivity increases with the increase of the diameter d′of the projectile.Under the set parameter conditions,when the target surface is 4 m×4 m,the projectile with a diameter of 6 mm or above can be detected and the target capture rate was required to be no less than 98%.At present,no missing detection has been found in the experiment,so effective detection can be realized on the whole target surface.The distribution model of detection sensitivity established is instructive for engineering practice.
作者
高丰佳
董涛
谭林秋
陈丁
王利
GAO Fengjia;DONG Tao;TAN Linqiu;CHEN Ding;WANG Li(Shaanxi Province Key Lab of Photoelectric Measurement and Instrument Technology,Xi’an Technological University,Xi’an 710021,China;School of Armament Science and Technology,Xi’an Technological University,Xi’an 710021,China;Heilongjiang North Tool Co.,Ltd.,China North Industries Group Corporation Limited,Mudanjiang 157000,China)
出处
《兵器装备工程学报》
CAS
CSCD
北大核心
2021年第4期238-243,共6页
Journal of Ordnance Equipment Engineering
基金
国家自然科学基金资助项目(61905187)
陕西省自然科学基础研究计划基金项目(2019JM-601)。
关键词
兵器靶场测试
大靶面探测光幕
原向反射
探测灵敏度
光通量
weapon range test
large target area light screen
retro-reflection
detection sensitivity
luminous flux