摘要
采用点击化学反应制备了GAP(叠氮缩水甘油聚醚)/PTPET(端炔基环氧乙烷–四氢呋喃共聚醚)弹性体,通过平衡溶胀法和DSC-TG(差热–热重)表征了弹性体的交联与热性能。在不同增塑比条件下,研究了不同配比的GAP/PTPET弹性体的交联密度、玻璃化转变温度(T_(g))和热分解表观活化能。结果表明:在相同增塑比条件下,GAP/PTPET弹性体的交联密度随反应物中PTPET含量的增大而呈增大的趋势;增塑比为2.6时,弹性体有较高的交联密度;GAP/PTPET弹性体中软段的T_(g)偏高于原材料PTPET中软段的T_(g);在相同增塑比条件下,随PTPET质量分数的增大,弹性体中软段的T_(g)减小。GAP/PTPET弹性体的热分解分为3个阶段,第一阶段和第二阶段的热分解表观活化能分别为122.2kJ/mol和137.4kJ/mol,均低于GAP均聚物的热分解表观活化能。
The GAP(glycidyl azide polymer)/PTPET(propynyl-terminated ethylene oxide-tetrahydrofuran)elastomer was prepared by using the Click chemical reaction.The crosslinking and thermal behaviors of the elastomer were characterized by using the equilibrium swelling method and DSC-TG(differential scanning calorimetry-thermogravimetry).The crosslinking density,glass transition temperature(T_(g))and apparent activation energy of thermal decomposition of the GAP/PTPET elastomers with different ratios were investigated under the conditions of different plasticization ratios.The results show that the under the same plasticization ratio,the crosslinking density of the GAP/PTPET elastomer exhibits an increasing trend with the increase of PTPET content.When the plasticization ratio is 2.6,the elastomer has higher crosslinking density,the T_(g) of the soft segment in the GAP/PTPET elastomer is slightly higher than that of the soft segment in the raw material PTPET.Under the condition of same plasticizer ratio,the T_(g) of the soft segment in the elastomer decreases with the increase of PTPEY mass fraction.The thermal decomposition of the GAP/PTPET elastomer can be divided into 3 stages,the apparent activation energies of the thermal decomposition in the first and second stage are 122.2kJ/mol and 137.4kJ/mol respectively,they are all lower than the apparent activation energy of the thermal decomposition of GAP homopolymer.
作者
蔡如琳
王敏
徐胜良
强福智
罗岚
李伟
Cai Rulin;Wang Min;Xu Shengliang;Qiang Fuzhi;Luo Lan;Li Wei(Hubei Institute of Aerospace Chemical Technology,Xiangyang 441003,China;Science and Technology on Aerospace Chemical Power Laboratory,Xiangyang 441003,China)
出处
《化学推进剂与高分子材料》
CAS
2021年第1期44-47,共4页
Chemical Propellants & Polymeric Materials
关键词
交联密度
玻璃化转变温度
活化能
crosslinking density
glass transition temperature
activation energy