摘要
针对当前腰椎间盘自动诊断方法存在的准确率偏低的问题,提出一种基于分步目标定位的计算机辅助诊断方法。该方法首先使用Faster R-CNN目标定位网络预处理腰椎间盘影像,去除韧带以及周围噪声区域,获得腰椎间盘的轮廓区域;然后放大定位的间盘轮廓3倍,再次利用Faster R-CNN网络精细化定位病灶区域,从而解决因病灶目标太小而无法准确定位的问题;最后,将病灶区域输入到改进的残差卷积神经网络中以提取高层特征和严重性分级,改进的残差卷积神经网络(ResNet-20)通过建立短路机制以提高分类器的准确率。实验结果表明,相较于传统的诊断方法,该方法将腰椎间盘突出的诊断准确率提升5.1%。
A computer-aided diagnosis method based on step-by-step target positioning(SSTP)is proposed for solving the problem of low accuracy in current methods for the automatic diagnosis of lumbar intervertebral disc herniation.Firstly,Faster R-CNN target positioning network is used to preprocess lumbar intervertebral disc images,remove ligaments and surrounding noise areas,and obtain the contour of lumbar intervertebral disc.Then,the contour of the located disc is enlarged by 3 times,and Faster R-CNN network is further applied to finely locate the focus area,thus solving the problem of inaccurate positioning due to the small focus.Finally,the focus area is input into the improved residual convolution neural network to extract high-level features and to grade the severity.The improved residual convolutional neural network(ResNet-20)improves the classifier accuracy by establishing a short-circuit mechanism.Experimental results show that the proposed method improves diagnostic accuracy of lumbar intervertebral disc herniation by 5.1%in comparison with traditional diagnostic methods.
作者
巩稼民
杨红蕊
郭庆庆
蒋杰伟
潘琼
马豆豆
高燕军
GONG Jiamin;YANG Hongrui;GUO Qingqing;JIANG Jiewei;PAN Qiong;MA Doudou;GAO Yanjun(School of Communication and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Electronic Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Science,Northwest Agriculture and Forestry University,Xi'an 712100,China;Department of Medical Imaging,Xi'an No.3 Hospital,Xi'an 710071,China)
出处
《中国医学物理学杂志》
CSCD
2021年第3期317-322,共6页
Chinese Journal of Medical Physics
基金
国家重点研发计划(2018YFC0116500)
中央高校基本科研业务费专项资金资助项目(JB181002)。