期刊文献+

基于改进SegNet模型的斑马线图像语义分割 被引量:12

Semantic segmentation of zebra crossing based on improved SegNet model
在线阅读 下载PDF
导出
摘要 无论是在智能驾驶系统中,还是在智能导盲系统中,道路标线的检测都是一项重要内容。针对传统斑马线识别方法精度低、速度慢的问题,提出了利用深度可分离卷积网络改进SegNet模型的语义分割方法,通过网络爬虫以及手动数据标注,经过Tensorflow深度学习框架训练,其模拟检测达到了较好的结果。试验结果表明,由自行构建的斑马线数据集,训练后的模型每帧运算速度在59 ms内,对斑马线区域分割的像素精度达98.1%,交并比达91.6%。此运算速度以及分割精度满足大部分智能导航系统的需求,为斑马线识别的机器视觉识别提供了技术支持。 Road marking detection is an important part in not only intelligent assistant driving system but also intelligent guidance system. Aiming at the problems of low accuracy and slow speed of traditional zebra crossing recognition methods, we proposed a semantic segmentation method based on SegNet model improved by using deep separable convolutional network. Through web crawler and manual data annotation, and through Tensorflow deep learning framework training, the simulation detection achieves good results. The experimental results show that the operation speed of each frame of the trained model is within 59 ms, and the pixel accuracy of zebra crossing region segmentation is 98.1% and the intersection and merging ratio is 91.6%. The calculation speed and segmentation accuracy meet the needs of most intelligent navigation systems, and provide technical support for the machine vision recognition of zebra crossing recognition.
作者 程换新 蒋泽芹 成凯 Cheng Huanxin;Jiang Zeqin;Cheng Kai(College of Automation and Electronic Engineering,Qingdao University of Science and Technology,Qingdao 266061,China)
出处 《电子测量技术》 2020年第23期104-108,共5页 Electronic Measurement Technology
基金 国家海洋局重大专项(国海科字[2016]494号No.30)资助。
关键词 SegNet 深度可分离卷积网络 斑马线 语义分割 SegNet depth separable convolution zebra crossing semantic segmentation
  • 相关文献

参考文献10

二级参考文献55

  • 1王树文,闫成新,张天序,赵广州.数学形态学在图像处理中的应用[J].计算机工程与应用,2004,40(32):89-92. 被引量:200
  • 2田建,李江,席建锋,矫成武.基于系统聚类的城市道路交叉口安全评价方法研究[J].武汉理工大学学报(交通科学与工程版),2006,30(6):1038-1040. 被引量:5
  • 3李德仁.论可量测实景影像的概念与应用——从4D产品到5D产品[J].测绘科学,2007,32(4):5-7. 被引量:61
  • 4Uddin M S, Shioyama T.Detection of Pedestrian Crossing Using Biploarity Feature——An Image-based Technique[J].IEEE Trans.on Intelligent Transportation Systems, 2005, 6(4): 439-445.
  • 5Uddin M S, Shioyama T.Bipolarity and Projective Invariant- based Zebra-crossing Detection for the Visually Im- paired[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]: IEEE Computer Society, 2005.
  • 6Sichelschmidt S, Haselhoff A, Kummert A.Pedestrian Crossing Detecting as a Part of Urban Pedestrian Safety System[C]//Proc.of IEEE Intelligent Vehicles Symposium.San Diego, USA: IEEE Press, 2010: 840-844.
  • 7Choi J, Lee J, Kim D, et al.Environment-detection-and- mapping Algorithm for Autonomous Driving in Rural or Off-road Environment[J].IEEE Trans.on Intelligent Transportation Systems, 2012, 13(2): 974-982.
  • 8Shamir L, Delaney J, Orlov N, et al.Image Segmentation and Pattern Recognition for Road Marking Analysis[C]]//Proc.of IEEE International Symposium on Industrial Electronics.[S.l.]: IEEE Press, 2004: 727-732.
  • 9Bertozzi M, Broggi A, Fascioli A.Stereo Inverse Per- spective Mapping: Theory and Application[J].Image and Vision Computing, 1998, 16(8): 585-590.
  • 10Lim Y, Lee M, Lee C, et al.Improvement of Stereo Vision- based Position and Velocity Estimation and Tracking Using a Stripe-based Disparity Estimation and Inverse Perspective Map-based Extended Kalman Filter[J].Optics and Lasers in Engineering, 2010, 48(9): 859-868.

共引文献80

同被引文献67

引证文献12

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部