期刊文献+

基于超表面的宽带高效线极化转换器设计 被引量:7

Design of broadband high efficiency linear polarization converter based on metasurface
在线阅读 下载PDF
导出
摘要 面向大带宽、高效率及小型化的极化转换器的应用需求,提出了一款高效宽频带反射型超表面线极化转换器。基于极化转换机理分析,在"H"型和开口环结构基础上,完成了一款"H"型开口环与椭圆金属片叠加的超表面极化转换器设计。在开口环结构对角线方向将开口环连接起来,使其在对角连接线上产生强烈电磁谐振,并利用圆弧渐变结构,进一步提高极化转换效率,扩展带宽。研究结果表明,极化单元在9.7~22.3 GHz频段内可实现95%的高效宽带x-y线极化转换效率。同时,该设计具有结构简单、易于加工等特点,可满足信息通信、测量以及成像等领域的应用需求。 To achieve wide bandwidth,high efficiency and miniaturization of polarization converters,an ultra-broadband reflecting linear polarization converter was proposed based on metasurface.Based upon the analysis of polarization conversion mechanism of"H"type and open ring structure,a metasurface polarization converter was designed,where a"H"shaped open ring was superimposed with an elliptical metal sheet.Strong electromagnetic resonance can be achieved by connecting the split-ring-structures in diagonal position.In addition,the gradient arc structure can dramatically improve the polarization conversion efficiency while expanding the band width.The results show that high polarization conversion ratio of 95% can be achieved between 9.7 GHz and 22.3 GHz.Meanwhile the proposed design has the characteristics of simple structure and easy processing,which can meet the application requirements for information communication,measurement,imaging and many other fields.
作者 汪竹 罗燕 寇家琪 阮巍 郝宏刚 WANG Zhu;LUO Yan;KOU Jiaqi;RUAN Wei;HAO Honggang(College of Electronics Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《电子元件与材料》 CAS CSCD 北大核心 2021年第2期163-167,178,共6页 Electronic Components And Materials
基金 重庆市自然科学基金(cstc2018jcyjAX0508) 重庆市教委科学技术研究项目资助(KJQN201800639)。
关键词 超表面 极化转换 线极化 电磁谐振 超宽带 高效率 metasurface polarization conversion linear polarization electromagnetic resonance ultra bandwidth(UWB) high efficiency
  • 相关文献

参考文献4

二级参考文献51

  • 1陈龙天, 程用志, 聂彦, 龚荣洲 2012 物理学报 61 094203].
  • 2王雯洁,王甲富,闰明宝,鲁磊,马华,屈绍波,陈红雅,徐翠莲.2014,物理学报,63,174101.
  • 3Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184.
  • 4Pendry J B 2000 Phys. Rev. Lett. 85 3966.
  • 5Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977.
  • 6Shelby R A, Smith D R, Schultz S 2001 Science 292 77.
  • 7Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333.
  • 8Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702.
  • 9Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104.
  • 10Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426.

共引文献18

同被引文献36

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部