期刊文献+

利用DBSCAN优化船舶领域算法的实时碰撞预警模型 被引量:3

A Ship Domain-Improved Real-time Collision Warning Model Based on DBSCAN
在线阅读 下载PDF
导出
摘要 船舶碰撞预警对于智慧城市中智能航道的实现具有重要意义。航船行驶极易受天气、水域、航速等复杂多变因素的影响,导致船舶碰撞预警的时效性和准确性不高。针对该问题,提出一种基于DBSCAN改进船舶领域算法的实时碰撞预警模型。该模型基于大规模船舶AIS轨迹,结合船舶行驶速度、船舶形状等因素,优化改进了传统船舶领域计算方法,并利用DBSCAN空间聚类思想,同时考虑船舶位置和船首向,在大量实时AIS数据下进行碰撞范围预测与潜在危险船舶预警。该模型使用长江流域真实AIS数据进行实验,并采用碰撞点时间估计法进行对比实验,结果表明,该模型能够有效提高碰撞预警的准确性和时效性。 Ship collision warning is of great significance to the realization of intelligent waterways in smart cities.Ship movement is easily affected by weather,water area,speed and other complex and variable factors,resulting in the low timeliness and accuracy of ship collision warning.Aiming at this problem,this paper proposes a ship domain-improved real-time collision warning model based on DBSCAN algorithm.This model improves the calculation method of traditional ships domain by considering the dynamic factors(e.g.speed,shape,direction,etc.).By utilizing the DBSCAN—a spatial clustering method,the ships’location and heading direction at the one moment are taken account into a collision range prediction model for the potential dangerous warning.In order to verify the efficiency of the model,a large scale of real AIS data around the Yangtze River Basin is used in the experiments.The experimental results show that the accuracy and timeliness of the proposed model can be obviously enhanced compared with the traditional collision warning model.
作者 何渡 肖丝雨 任俊伟 刘子恒 沈昕 李凯文 陈智军 HE Du;XIAO Si-yu;REN Jun-wei;LIU Zi-heng;SHEN Xin;LI Kai-wen;CHEN Zhi-jun(Hubei Academy of Scientific and Technical Information,Wuhan 430063,China;School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China)
出处 《软件导刊》 2021年第2期107-113,共7页 Software Guide
基金 湖北省自然科学基金面上项目(2019CFB757) 国家水运安全工程技术研究中心开放基金项目(A2019011) 内河航运技术湖北省重点实验室基金项目(NHHY2017001) 湖北省教育厅科学研究计划重点项目(D20161001) 中央高校基本科研业务费专项项目(2019III050GX,2019III007GX)。
关键词 时空大数据 AIS 船舶领域 实时航情 DBSCAN spatiotemporal big data ship AIS ship domain real-time navigatioin DBSCAN
  • 相关文献

参考文献11

二级参考文献64

  • 1常菲,浦争艳,李明禄,李治洪.综合地图匹配定位技术研究[J].计算机工程与应用,2004,40(19):200-202. 被引量:7
  • 2贾传荧.拥挤水域内船舶领域的探讨[J].大连海运学院学报,1989,15(4):15-19. 被引量:27
  • 3王当利,黄立文.基于GPS,ARPA和陀螺罗经信息开发船舶自动避碰模型及其仿真[J].武汉理工大学学报(交通科学与工程版),2006,30(1):136-139. 被引量:3
  • 4Jan MCGeoch FNI. 《hat you see is what you get-A radar-based universal shipborne automatic identification system (AIS).Seaways》,August 2002,[J]76(3) :15-16.
  • 5王当利.无人驾驶船舶的发展途径[J].中国水运,2004,(4):139-140.
  • 6Jun Kayano, Junji Fukuto, Hayama Imazu, Kazuyuki Igarashi. On a collision avoidance support system for one person bridge operation [ C ], Proceedings of the 3rd International Conference on Collision and Grounding of Ships, 2004:81-86,
  • 7TRAJCEVSKI c WOLFSON O, HINRICHS K, et ai. Managing uncertainty in moving objects databases[J]. ACM Transactions on Database Systems, 2004, 29(3): 463-507.
  • 8MORZY M. Mining frequent trajectories of moving objects for location prediction[C]//Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition. Berling: Springer, LNCS 4571, 2007: 667-680.
  • 9TRAJCEVSKI TAMASSIA R, DING H, et al. Continuous probabilistic nearest-neighbor queries for uncertain trajectories [C]//Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology. New York: ACM, 2009: 874-885.
  • 10QIAO Shao-jie, TANG Chang-jie, JIN Hui-dong, et al. PutMode: Prediction of uncertain trajectories in moving objects databases[J]. Applied Intelligence, 2010, 33(3): 370-386.

共引文献258

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部