期刊文献+

基于LSTM的雷达脉冲重复间隔调制模式识别 被引量:12

Radar PRI Modulation Pattern Recognition Method Based on LSTM
在线阅读 下载PDF
导出
摘要 针对现有基于雷达脉冲重复间隔(PRI)调制模式识别性能受特征选择和门限设置影响较大的问题,提出一种基于长短时记忆网络的识别方法。该方法以脉冲时间序列为输入,不需要人工选择特征和设置门限,通过构建信号参数特征自动提取及PRI调制模式一体化识别的循环神经网络结构,训练获得最优的网络参数完成雷达信号调制模式识别。仿真结果表明:该方法识别精度高,并对脉冲丢失、测量噪声影响及脉冲数量少等情况具有良好的适应能力,适合于工程应用。 To solve the problem that the performance of pulse repetition interval(PRI)modulation pattern recognition method is affected by the feature selection and threshold setting,a PRI recognition method based on the long short-term memory is proposed.This method takes pulse time series as input,and it is unnecessary to select features and set thresholds manually.The recurrent neural network of PRI modulation pattern identification which can extract the signal parameter characteristics automatically is designed.The optimal network parameters are obtained by training to complete the recognition.The simulation results show that the method has high recognition accuracy and good adaptability to pulse loss,measurement noise,and small number of pulses,so it is suitable for engineering application.
作者 孟磊 曲卫 马爽 刘元华 MENG Lei;QU Wei;MA Shuang;LIU Yuanhua(Graduate School,Space Engineering University,Beijing 101416,China;Department of Electronic and Optical Engineering,Space Engineering University,Beijing 101416,China;Beijing Institute of Remote Sensing,Beijing 100192,China)
出处 《现代雷达》 CSCD 北大核心 2021年第1期50-57,共8页 Modern Radar
关键词 循环神经网络 长短时记忆网络 脉冲重复间隔调制 模式识别 recurrent neural network long short-term memory network pulse repetition interval modulation pattern recognition
  • 相关文献

参考文献4

二级参考文献30

  • 1张葛祥,荣海娜,金炜东.支持向量机在雷达辐射源信号识别中的应用[J].西南交通大学学报,2006,41(1):25-30. 被引量:31
  • 2JAMES TSUI . Digital Microwave Receives Theory and Concepts [ M ]. Artech House : 1992.
  • 3RUBIOLA E, DEL A CASALE, DE MARCHI A. Noise Induced Time Interval Measurement Biases [ J ]. IEEE Frequency Control Symposium, 1992 : 265 -265.
  • 4NOONE G P.A neural approach to automatic pulse repetition interval modulation recognition[C]// Proceedings of International Conference on Information,Decision and Control,1999,213-218.
  • 5ZHANG Gexiang,RONG Haina,JIN Weidong,et al.Radar emitter signal recognition based on resemblance coefficient features[C]// Lecture Notes in Artificial Intelligence.Berlin:Springer Verlag,2004,3066:665-670.
  • 6NOONE G P.A neural approach to tracking radar pulse repetition interval modulation[C] //Proceedings of 6th International Conference on Neural Information Processing,1999,3:1 075-1 080.
  • 7MARDIA H K.New technique for the deinterleaving of repetitive sequences[J].IEE Proceedings,Part F:Communications,Radar and Signal Processing,1989,136(4):149-154.
  • 8MILOJEVIC D J,POPOVIC B M.Improved algorithm for the deinterleaving of radar pulses[J].IEE proceedings,Part F:Radar and Signal Processing,1992,139(1):98-104.
  • 9VAPNIK V.Statistical learning theory[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 10HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.

共引文献381

同被引文献118

引证文献12

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部