期刊文献+

Face anti-spoofing algorithm combined with CNN and brightness equalization 被引量:7

基于CNN和亮度均衡的人脸活体检测算法
在线阅读 下载PDF
导出
摘要 Face anti-spoofing is a relatively important part of the face recognition system,which has great significance for financial payment and access control systems.Aiming at the problems of unstable face alignment,complex lighting,and complex structure of face anti-spoofing detection network,a novel method is presented using a combination of convolutional neural network and brightness equalization.Firstly,multi-task convolutional neural network(MTCNN)based on the cascade of three convolutional neural networks(CNNs),P-net,R-net,and O-net are used to achieve accurate positioning of the face,and the detected face bounding box is cropped by a specified multiple,then brightness equalization is adopted to perform brightness compensation on different brightness areas of the face image.Finally,data features are extracted and classification is given by utilizing a 12-layer convolution neural network.Experiments of the proposed algorithm were carried out on CASIA-FASD.The results show that the classification accuracy is relatively high,and the half total error rate(HTER)reaches 1.02%. 人脸活体检测是人脸识别系统中比较重要的一环,对金融支付、门禁系统等具有重大意义。针对人脸对齐不稳定、复杂光照、活体检测网络结构复杂等问题,论文提出使用卷积神经网络和亮度均衡结合的方法。论文首先使用基于P-net,R-net,O-net三个CNN进行级联的MTCNN算法,实现对人脸的精准定位并将检测出的人脸边界框按指定倍数裁剪人脸,接下来使用亮度均衡对人脸图像不同亮度区域进行亮度补偿,最后使用一个设计的12层卷积神经网络提取数据特征并进行分类。论文将所提算法在CASIA-FASD上进行实验,结果表明分类准确率比较高,HTER达到了1.02%。
作者 CAI Pei QUAN Hui-min 蔡佩;全惠敏(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China)
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期194-204,共11页 中南大学学报(英文版)
基金 Project(61671204)supported by National Natural Science Foundation of China Project(2016WK2001)supported by Hunan Provincial Key R&D Plan,China。
关键词 face anti-spoofing MTCNN brightness equalization convolutional neural network 人脸活体检测 MTCNN 亮度均衡 卷积神经网络
  • 相关文献

参考文献3

二级参考文献62

  • 1庄军,李弼程,陈刚.一种有效的文本图像二值化方法[J].微计算机信息,2005,21(06X):56-57. 被引量:24
  • 2Adleman L M.Molecular Computation of Solution to Combinatorial Problems[J].Science,1994(11):1021-1024.
  • 3Lipton R J.DNA Solution of Hard Computational Problems[J].Science,1995(4):542-545.
  • 4Abutaleb A S.Automatic Thresholding of Gray-Level Picture Using Two-Dimensional Entropies[J].Pattern Recognition,1989,47:22-32.
  • 5Lee S,Chung S.A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[J].Computer Vision,Graphics,and Image Processing,1990,52:171 -190.
  • 6Ostu N A.Threshold Selection Method from Gray-Level Histograms[J].IEEE Trans on System,Man,and Cybernetics,1979,9(1):62-66.
  • 7Durand C X,Faguy D.Rational zoom of bit maps using B-spline interpolation in computerized 2-D animation[J].Computer Graphics Forum,1990,9(1):27-37.
  • 8JAIN A K, ROSS A, PRABHAKAR S. An introduction to biometric recognition [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 4~0.
  • 9JAIN A K, ROSS A, PRABHAKAR S. Biometric identifcation [J]. Communications of the ACM, 2000, 43(2): 91-98.
  • 10MEDIONI G, WAUPOTITSCH R. Face modeling and recognition in 3-D [C]// Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Nice, France: IEEE, 2003:232 233.

共引文献19

同被引文献45

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部