期刊文献+

基于降噪回溯SAMP算法的Massive MIMO信道估计 被引量:1

MASSIVE MIMO CHANNEL ESTIMATION BASED ON NOISE REDUCTION BACKTRACKING SAMP ALGORITHM
在线阅读 下载PDF
导出
摘要 传统的LS算法、MMSE算法应用于信道估计时需要进行协方差矩阵求逆的运算,当信号数量庞大时,会有很高的计算复杂度。考虑到信号稀疏性的特点,可将压缩感知理论应用于信道估计中。常见的压缩感知贪婪类算法有OMP算法和CoSaMP算法,这两种算法需要将稀疏度作为已知条件,因此限制了其使用。提出基于降噪回溯SAMP算法(NrSAMP),将其应用于Massive MIMO系统的信道估计。该算法改进了传统SAMP算法在信道估计时的步长选择,避免了稀疏度已知的必要条件,同时利用降噪技术,在噪声环境下获得了更好的重构精度,证明了该算法的优势和较高的使用价值。 When traditional LS algorithm and MMSE algorithm are applied to channel estimation,the covariance matrix inversion is needed.When the number of signals is large,the computation complexity will be very high.Considering the sparsity of signals,compressed sensing theory can be applied to channel estimation.The common greedy algorithms of compressed sensing include OMP algorithm and CoSaMP algorithm,which need to take sparsity as a known condition,so their use is limited.This paper proposes a noise reduction backtracking SAMP(NrSAMP)algorithm,which is applied to channel estimation in Massive MIMO system.It improves the step size selection of traditional SAMP algorithm in channel estimation,avoids the necessary condition of known sparsity,and achieves better reconstruction accuracy under noise environment by using noise reduction technology,which proves its superiority and higher application value.
作者 徐昊 李春树 Xu Hao;Li Chunshu(School of Physics and Electronics-Electrical Engineering,Ningxia University,Yinchuan 750021,Ningxia,China;Ningxia Key Laboratory of Intelligent Sensing for Desert Information,Yinchuan 750021,Ningxia,China)
出处 《计算机应用与软件》 北大核心 2021年第1期99-104,共6页 Computer Applications and Software
基金 宁夏自然科学基金项目(NZ17051)。
关键词 信道估计 压缩感知 OMP CoSaMP SAMP MASSIVE MIMO Channel estimation Compressed sensing OMP CoSaMP SAMP Massive MIMO
  • 相关文献

参考文献7

二级参考文献166

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2屈梁生,孟建.机械故障诊断技术与当代前沿科学(二)[J].设备管理与维修,1996(1):25-28. 被引量:3
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献892

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部