期刊文献+

废旧光伏组件回收技术研究进展 被引量:21

Research progress on recycling technology of end-of-life silicon photovoltaic modules
在线阅读 下载PDF
导出
摘要 近年来,全球光伏产业不断扩大,光伏装机量也逐渐提升。在光伏能源产业市场中,基于晶硅太阳电池的光伏组件目前处于主导地位,该类组件中含有大量的有价元素(铝、硅、银、铜和锡等),并且含有少量铅,将其丢弃和填埋会造成一定的资源浪费和环境污染。本文通过对国内外相关文献进行分析,总结物理法和化学法两大主要组件回收方法。从组件的拆解、封装层的去除、有价元素的浸出和表面减反层的刻蚀技术4个方面分析现有回收技术存在的问题,对比不同回收方法所得产物回收率、产物价值和实际应用的可能性,为今后废旧光伏组件回收技术的发展提供参考和建议。 In recent years,with the expansion of the global photovoltaic industry,the installed photovoltaic capacity increases gradually.In the photovoltaic energy industry market,the photovoltaic modules based on crystalline silicon solar cells are currently in a leading position.Crystalline silicon photovoltaic modules contain a large amount of valuable elements(aluminum,silicon,silver,copper,tin,etc)and a small amount of lead.If they are discarded and landfilled,resource waste and environmental pollution will be casued.The advantages and disadvantages of physical and chemical methods were summarized by analyzing relevant literature in China and abroad.The existing problems of the recycling technology were analyzed.The product recovery rate,value and practical application possibility of different recycling routes from the disassembly of the components,the removal of the encapsulation layer,the leaching of valuable elements and the etching technology of the surface antireflection layer were compared.References and suggestions were provided for future development of the end of life photovoltaic module recycling technology.
作者 周哲 孙凯文 蒋良兴 贾明 刘芳洋 ZHOU Zhe;SUN Kaiwen;JIANG Liangxing;JIA Ming;LIU Fangyang(School of Metallurgy and Environment,Central South University,Changsha 410083,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第12期3279-3288,共10页 Journal of Central South University:Science and Technology
基金 国家重点研发计划项目(2018YFB1500600)。
关键词 光伏组件 回收 EVA去除 湿法浸出 刻蚀 photovoltaic module recycling EVA removal wet leaching etching
  • 相关文献

参考文献6

二级参考文献38

  • 1徐雪青,沈辉,邓润坤,黎宪静.若干太阳电池封装用粘接剂的耐老化性能评价[J].太阳能学报,2004,25(4):438-442. 被引量:17
  • 2[1]Abe S, Matsubara H, Tamura T, 1978. Evolved gas analysis of ethylene-vinyl acetate copolymers[J]. Bunseki Kagaku, 27: T34-T38.
  • 3[2]Frisson L, Lieten K, Bruton T et al., 2000. Recent improvements in industrial PV module recycling[C]. 16th European photovoltaic solar energy conference, Glasgow, UK, May 1-5, 2000.
  • 4[3]Haussler L, Pompe G, Albrecht V et al., 1998. Determination of vinyl acetate content in EVA copolymers. Possibilities and limits in the use of MS-coupled analysis methods[J]. Journal of Thermal Analysis and Calorimetry, 52: 131-143.
  • 5[4]Hrdina K E, Halloran J W, Oliveira A et al., 1998. Chemistry of removal of ethylene vinyl acetate binders[J]. Journal of Materials Science, 33: 2795-2803.
  • 6[5]Hrdina K E, Halloran J W, Kaviany M et al., 1999. Defect formation during binder removal in ethylene vinyl acetate filled system[J]. Journal of Materials Science, 34: 3281-3290.
  • 7[6]John R B, Igor I A, 1997. Possibility of recycling silicon PV modules[C]. 26th PVSC, Anaheim, CA, Sept. 30-Oct. 3, 1997.
  • 8[7]Kissinger H E, 1957. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 29: 1702-1706.
  • 9[8]Maurin M B, Dittert L W, Hussain A A, 1991. Thermogravimetric analysis of ethylene-vinyl acetate copolymers with Fourier transform infrared anylysis of the pyrolysis products[J]. Thermochimica Acta, 186: 97-102.
  • 10[9]McGrattan B J, 1994. Examining the decomposition of ethylene-vinyl acetate copolymers using TG/GC/IR[J]. Applied Spectroscopy, 48: 1472-1476.

共引文献67

同被引文献191

引证文献21

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部