期刊文献+

基于深度学习的光纤收卷机器视觉自动检测技术 被引量:9

Machine Vision Automatic Inspection Technology of Optical Fiber Winding Based on Deep Learning
在线阅读 下载PDF
导出
摘要 已有的光纤收卷检测方法的泛化能力和环境适应性均较差,无法应用于工业生产.提出基于深度学习的机器视觉方法对收卷过程中的收卷图像进行分类来解决光纤收卷问题.通过考虑光纤收卷时光纤间力的作用,建立了光纤收卷模型,提出了光纤收卷时排线机构的速度表达式.使用相机采集大量光纤收卷图片形成数据集,搭建并训练神经网络模型用于对收卷情况进行分类.通过实验验证,该方法对间隙状态的识别正确率在94.67%以上,叠线状态识别正确率为100%,检测速度高于实际生产绕线速度,是一种可以和控制系统相结合替代人工收卷并实现自动精密绕线的良好方法. Existing optical fiber winding inspection methods have poor generalization ability and environmental adaptability,and cannot be applied to industrial production.A machine vision method based on deep learning was proposed to classify the winding images during the winding process to solve the optical fiber winding problem.By considering the effect of the force between the optical fibers when the optical fiber was winding,the optical fiber winding model was established,and the speed expression of the arranging mechanism was proposed when the optical fiber was winding.The camera was used to collect a large number of optical fiber winding pictures to form a data set,and a neural network model was built and trained to classify the winding situation.Experimental verification showed that the accuracy of this method for gap state recognition is over 94.67%,and the accuracy of overlapped line recognition is 100%.The inspection speed is higher than the actual production winding speed.It is a favorable method that can be combined with the control system to replace manual winding and realize automatic precision winding.
作者 刘宇 魏希来 王帅 戴丽 LIU Yu;WEI Xi-lai;WANG Shuai;DAI Li(School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110819,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第1期68-74,共7页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51875094) 中央高校基本科研业务费专项资金资助项目(N2003011).
关键词 光纤收卷 深度学习 机器视觉 缺陷检测 自动检测 optical fiber winding deep learning machine vision defect detection automatic detection
  • 相关文献

参考文献4

二级参考文献26

  • 1赵勇,刘军,张春熹,刘海涛.光纤陀螺传感线圈及绕法[J].半导体光电,2002,23(5):312-314. 被引量:7
  • 2葛文谦,王巍,高峰,单联洁.基于视觉技术的光纤陀螺闭合光路光纤缺陷检测方法[J].中国惯性技术学报,2014,12(2):265-270. 被引量:3
  • 3赵晋洪,舒晓武,牟旭东,刘承.光纤绕线机张力控制系统的研究[J].光学仪器,2005,27(2):37-41. 被引量:6
  • 4李艳,徐宏杰,张春熹.光纤陀螺光纤环的热致非互异性研究[J].光学技术,2006,32(5):770-772. 被引量:6
  • 5Arditty H J. Sagnac effect in fiber gyroseope[J]. Optics Letters, 1981(6) : 401-403.
  • 6Ezekiel S, Smith S P. Basic principle of fiber-optic gyro- scopes[J]. Academic Press, 1994, 8(2): 621-655.
  • 7Shi Jinfang, Su Zhenwei, Li Guohui, et al. A new ma- chine vision system with visual attention function [ J ]. Journal of Information and Computational Science, 2010, 7(14) : 3011-3018.
  • 8Aloimonos Y. Special issue on purposive qualitative active vision[J]. CVGIP-IU, 1992, 56(1): 1-20.
  • 9Newman T S, Jain A K. A Survey of automated visual inspection [J ]. Computer Vision and Image Understand- ing, 1995, 61(2): 231-262.
  • 10Payet N, Todorovic S. SLEDGE: sequential labeling of image edges for boundary detection[J]. Int. J. Comput. Vis., 2013, 104: 15-37.

共引文献7

同被引文献96

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部