期刊文献+

等光强非等截面LFR光伏系统光学分析

OPTICAL ANALYSIS OF UNEQUAL WIDTH SECTION LFR PV-SYSTEM WITH EQUAL LIGHT INTENSITY
在线阅读 下载PDF
导出
摘要 为避免传统聚光式光伏系统中反射镜面的遮挡,介绍等光强非等截面线性菲涅尔反射镜(LFR)聚光光伏系统的设计原理,并对系统的几何设计进行介绍。建立该系统反射聚光器的光学分析模型,利用蒙特卡罗光线追迹方法对该聚光器的聚光效果和性能进行模拟和分析,结果表明该系统具有良好的聚光均匀性。对等光强非等截面LFR光伏系统参数分析表明,系统几何聚光比随镜场宽度的增大而增加,而镜场利用率则随镜场宽度的增大存在最优值。对系统跟踪误差进行计算,结果表明当反射器追迹光线偏差1°时,聚光器的效果降低37.5%。 In order to avoid the shading effect of the mirrors in the conventional concentrated photovoltaic system,this paper introduces the design principle of uniform-light-intensity non-equal-width linear Fresnel reflector(LFR)photovoltaic system as well as the geometrical design of the system. The optical analysis model of the reflective concentrator is established and the Monte Carlo ray tracing method is applied to simulate and analyze the solar concentration performance.And the results show that the system has good uniformity of solar collection. The parameters analysis results of LFR photovoltaic system show that the geometric concentrating ratio of the system increases with the increase of the width of the mirror field,while the utilization ratio of the mirror field exists an optimal value with the mirror field width increasing. The tracking error of the system is calculated and the results show that the optical efficiency of the LFR concentrator is reduced by 37.5% when the tracking deviation angle is 1°.
作者 曹丽华 潘同洋 姜铁骝 王刚 徐志明 Cao Lihua;Pan Tongyang;Jiang Tieliu;Wang Gang;Xu Zhiming(School of Energy and Power Engineering,Northeast Elecrie Power Unitersity,Jilin 132012,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2020年第12期63-68,共6页 Acta Energiae Solaris Sinica
基金 吉林省科技发展计划(20170623057TC)。
关键词 太阳能 太阳电池 太阳能聚光器 均匀聚光 能流密度 LFR solar energy solar cell solar concentrator uniform spectral concentration energy flux density LFR
  • 相关文献

参考文献3

二级参考文献67

  • 1赵建华.过去十年硅太阳电池研究的进展[J].电源技术,1994,18(6):18-24. 被引量:1
  • 2夏新林,谈和平,唐明,余其铮.空间光学系统中杂散辐射计算的蒙特卡洛方法验证[J].哈尔滨工业大学学报,1996,28(1):17-22. 被引量:10
  • 3O' Neill M J, McDanal A J, Jaster P A. Development of terrestrial concentrator modules using high-efficiency multijunction solar cells [ A ]. 29th IEEE PVSC [ C ]. New Orleans,2002:1369-1372.
  • 4Andreev V M, Grilikhes V A, Rumyantsev V D. Photovoltaic conversion of concentrated sunlight [ M ]. Chichester :John, Wiley & Sons Ltd, 1997.
  • 5FranklinE, Coventry J. Effects of highly non-uniform illumination distribution on electrical performance of solar cells [A]. 40th ANZSES Solar energy conference[ C ]. Newcastle (Australia), 2002.
  • 6Wennerberg J, Kessler J, Hedstrom J, et al. Thin film PV modules for low-concentrating systems [ J ]. Solar energy,2001, 69(6) : 243-255.
  • 7Anton I, Sala G, Pach6n D. Correction of the voc vs temperature dependence under non-uniform concentrated illumination[ A ]. 17th EC photovoltaic solar energy conference [C]. Munich (Germany), 2001 : 156-159.
  • 8Hein M, Dimroth F, Siefer G, et al. Characterisation of a 300× photovoltaic concentrator system with one-axis tracking[ J]. Solar energy materials and solar cells, 2003, 75 ( 1- 2) : 277- 283.
  • 9Hayden H, Johnston P, Garboushian V, et al. APS installation and operation of 300 kW of amonix high concentration pv systems [ A]. 29th IEEE PVSC[ C]. New Orleans, 2002: 1362- 1368.
  • 10Arboiro J C, Sala G. Self-learning tracking: a new control strategy for PV concentrators[ J]. Research and applications,1997, 5(3) : 213-226.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部