摘要
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise.
极限学习机(ELM)作为一种新型的神经网络模型,具有良好的学习速度和泛化能力。然而,单隐层结构的ELM在面临大规模多特征问题时往往不能取得良好的效果,为了解决这个问题,提出一个新型的多层ELM学习算法框架来提高模型的泛化能力。此外,在实际应用中,经常会因为出现噪声或异常点而导致训练数据被污染,面对被污染的数据,普通的ELM的泛化能力会下降。为了解决这个问题,利用偏差-方差分解理论,在损失函数中加入模型的偏差和方差,使模型获得最小化模型偏差和模型方差的能力,从而降低噪声信号的影响。我们提出一种新的鲁棒多层算法ML-RELM,来提升在含有离群点的复杂数据集中的鲁棒性。仿真结果表明,该方法具有较强的泛化能力和较强的抗噪声能力。
作者
YU Tian-jun
YAN Xue-feng
俞天钧;颜学峰(Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai 200237,China)
基金
Project(21878081)supported by the National Natural Science Foundation of China
Project(222201917006)supported by the Fundamental Research Funds for the Central Universities,China。