期刊文献+

基于改进粒子群优化的多无人机协同航迹规划 被引量:20

Cooperative Path Planning of Multi-unmanned Aerial Vehicle Based on Improved Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 由于航迹规划可以为多无人机飞行控制提供参考指令,且当前粒子群航迹规划算法存在收敛速度慢,成功率不高的缺点,故提出一种综合改进粒子群的多无人机协同航迹规划算法,考虑了无人机性能约束、障碍与威胁约束、空间协同与时间协同约束。首先,通过对学习因子线性化调整,实现了粒子惯性和最优行为的平衡;其次,引入混沌初始化,改善了粒子分布质量;然后,基于遗传变异思想设计了取代策略,同时提出了调速机制,提升了算法收敛速度;最后,将综合改进粒子群算法进行仿真验证。规划结果成功率高、收敛速度快且航迹代价小,可见改进算法的有效性。 The path planning can provide reference instructions for multi-unmanned aerial vehicle(UAV)flight control.But current particle swarm optimization(PSO)trajectory planning algorithms have the disadvantages of slow convergence and low success rate.Therefore,a multi-UAV with comprehensive improvement of particle swarm was proposed.The collaborative path planning algorithm considered UAV performance constraints,obstacle and threat constraints,space collaboration and time collaboration constraints.Firstly,through the linear adjustment of the learning factors,the balance between particle inertia and optimal behavior was achieved.Secondly,chaotic initialization was introduced to improve the quality of particle distribution.Then,a replacement strategy was designed based on the idea of genetic mutation,and a speed regulation mechanism was also proposed to improve the convergence speed of the algorithm.Finally,a comprehensive improved particle swarm algorithm was used for simulation verification.The planning results have a high success rate,fast convergence speed,and low path cost,which verify the effectiveness of the improved algorithm.
作者 杜云 彭瑜 邵士凯 刘冰 DU Yun;PENG Yu;SHAO Shi-kai;LIU Bing(School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)
出处 《科学技术与工程》 北大核心 2020年第32期13258-13264,共7页 Science Technology and Engineering
基金 国家自然科学基金(61903122) 卫星导航系统与装备技术国家重点实验室开放基金 河北科技大学博士启动基金(PYB2019010) 河北科技大学校立科研基金(2014PT27) 河北省通用航空增材制造协同创新中心开放基金。
关键词 多无人机 协同航迹规划 改进粒子群算法 混沌初始化 multi-unmanned aerial vehicle coordinated flight path planning improved particle swarm optimization algorithm chaos initialization
  • 相关文献

参考文献2

二级参考文献13

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:210
  • 3赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 4Angeline P J.Evolutionary optimization versus particle swarm optimization:philosophy and performance differences[J].Evolutionary Programming Ⅶ,1998,(6):84-89.
  • 5Dorigo M,Luca Maria Gambardella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[C].IEEE Transactions on Evolutionary Computation,1997:53-56.
  • 6Holland J H.Adaptation in Natural and Artificial Systems[M].London:The MIT Press,1995.
  • 7Xie X F,Zhang W J.A dissipative particle swarm optimization[C].In:Proc.of the IEEE Int'l Conf.on Evolutionary Computation.Honolulu:IEEE Inc.,2002:1 456-1 461.
  • 8Ratnaweera A,Halgamuge SK.Self-Organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[C].IEEE Trans.on Evolutionary Computation,2004,8:240-255.
  • 9Kennedy J,Eberhart R C.Particle swarm optimization[C].In:Proc.of the IEEE Int.Conf.on Neural Networks,IEEE Service Center,Piscataway,NJ,1995:1 942-1 948.
  • 10Silva C P.Survey of chaos and its applications[C].In:Proc.of the IEEE MTT-S Int'l Microwave Symposium Digest(Part Ⅲ),San Francisco,USA,1996:1 871-1 874.

共引文献10

同被引文献210

引证文献20

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部