期刊文献+

Uniform Cramer moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment 被引量:6

原文传递
导出
摘要 Let{Zn,n≥0}be a supercritical branching process in an independent and identically distributed random environment.We prove Cramer moderate deviations and Berry-Esseen bounds for log(Zn+n0/Zn0)uniformly in n0∈N,which extend the corresponding results by I.Grama,Q.Liu,and M.Miqueu[Stochastic Process.Appl.,2017,127:1255-1281]established for n0=0.The extension is interesting in theory,and is motivated by applications.A new method is developed for the proofs;some conditions of Grama et al.are relaxed in our present setting.An example of application is given in constructing confidence intervals to estimate the criticality parameter in terms of log(Zn+n0/Zn0)and n.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2020年第5期891-914,共24页 中国高等学校学术文摘·数学(英文)
基金 supported by the National Natural Science Foundation of China(Grant Nos.11601375,11971063,11731012) the Natural ScienceFoundation of Guangdong Province(Grant No.2018A030313954) the Centre Henri Lebesgue(CHL,ANR-11-LABX-0020-01).
  • 相关文献

参考文献1

二级参考文献4

共引文献9

同被引文献8

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部