摘要
Methotrexate(MTX)is one of the most consumed anti-cancer drugs in the pharmaceutical market around the world.The widespread occurrence of MTX in aquatic environment through hospital effluent has attracted increasing concern due to its potential to induce water pollution.In the present study,the degradation of MTX in aqueous medium was investigated by UV-activated peroxymonosulfate(PMS).A significant improvement in degradation rate by increasing UV intensity and PMS concentration while the decrease in degradation efficiency with the increase of solution p H and initial concentration of MTX was observed.The proposed UV/PMS process could achieve more than 90%MTX degradation in 30 min with a good mineralization degree(65%).A pseudofirst order kinetic model was employed and successfully predicted the degradation of MTX.The effect of other operational parameters such as the initial concentration of the targeted compound,dosage of oxidant(PMS),solution p H and UV intensity on the degradation rate were investigated.At the last,the main transform intermediates were identified using LC–MS and possible degradation pathways were proposed.The results show that UV/PMS can be used as an efficient technology to treat pharmaceuticals such as methotrexate containing water and wastewater.
基金
the financial support of research grants from the Hong Kong Polytechnic University(Q67H)and Higher Education Commission(HEC),Pakistan for the financial support during IRSIP。