期刊文献+

多传感器信息融合的自动驾驶车辆定位与速度估计 被引量:23

Automatic Vehicle Location and State Estimation Based on Multi-Sensor Data Fusion
在线阅读 下载PDF
导出
摘要 针对大学生无人驾驶方程式(FSAC)于地图内高精定位以及速度观测的问题,设计基于多传感器信息融合的状态估计算法,并应用于自研实车平台。算法基于迭代扩展卡尔曼滤波(iEKF)进行设计,融合多类传感器,包括惯性测量单元(IMU)、转角及轮速编码器、全球卫星定位(GPS)、相机与激光雷达(Lidar)。首先,利用IMU预测车辆先验状态;然后,建立并联融合架构,对各类传感器数据进行不同的信息处理,用于更新先验状态;由于并联融合的架构,不同传感器可独立地维护车辆的状态观测。实验结果表明,所提出的算法对地图内定位、速度观测有较好的精度,且具有足够的冗余性和实时性。 In order to deal with the high-precision positioning and speed problem for Formula SAE(FSAE)vehicle,a new multi-sensor data fusion estimation method based on filter is proposed and applied on real vehicle platform.The method is designed based on Iterative Extended Kalman Filter(iEKF),and combine different sensors,including the IMU,wheel speed and steering encoders,the GPS,Camera and Lidar.First,the IMU is used to predict vehicle prior state;Then,the other sensors are respectively subjected to different information extraction in parallel fusion architecture,and updated the prior state.Because of the parallel fusion architecture,different sensors may update the vehicle state vector independently.Experimental results show that the proposed method has high precision dealing with the positioning in map and speed estimation problems,and has sufficient redundancy and real-time performance.
作者 彭文正 敖银辉 黄晓涛 王鹏飞 PENG Wenzheng;AO Yinhui;HUANG Xiaotao;WANG Pengfei(School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou Guangdong 510006,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2020年第8期1140-1148,共9页 Chinese Journal of Sensors and Actuators
关键词 自动驾驶 自主定位 状态估计 迭代扩展卡尔曼滤波 在线估计 多传感器信息融合 automatic vehicle self-localization state estimation iEKF online estimation multi-sensor data fusion
  • 相关文献

参考文献4

二级参考文献32

  • 1Ren W,Zhang T,Zhang H Y,et al. A research on calibration of low precision MEMS inertial sensors[C]//Proc, of the Control and Decision Conference, 2013:3243 - 3247.
  • 2Shen S C,Chen C J, Huang H J. A new calibration method for MEMS inertial sensor module[ C] // Proc. of the l lth IEEE In ternational Workshop on Advanced Motion Control, 2010:106 - 111.
  • 3Marco C,Giorgio F,Riccardo G,et al. Real time data fusion and MEMS sensors fault detection in an aircraft emergency attitude unit based on Kalman filtering [J]. IEEE Sensors Journal, 2012,12(10) :2984 - 2992.
  • 4Jose V,Paulo O,Pedro B. Discrete-time complementary filters for attitude and position estimation design analysis and experi mental validation[J]. IEEE Trans. on Control Systems Tech nology,2011,19(1):181- 198.
  • 5Waltert T R. A comparison of complementary and Kalrnan filtering[J]. Aerospace and Electronic Systems, 1975,11(3) :321 - 325.
  • 6Stephen P T,Li W L,Sheng C Y,et al. Motion and attitude estima- tion using inertial measurements with complementary fiker[C]// Proc. of the 8th Asian Control Conference,2011:863 - 868.
  • 7Mahony R, Hamel T,Pflimlin J M, et al, Nonlinear comple- mentary filters on the special orthogonal group [J]. IEEE Trans. on Automatic Control,2008,53(5):1203-1217.
  • 8Georgy J ,Noureldin A,Korenberg M J ,et al. Modeling the sto chastic drift of a MEMS-based gyroscope in gyro/odometer/GPS Integrated Navigation [ J ]. Intelligent Transportation Systems, 2010,11 (4) : 856 - 872.
  • 9Hassen F, Noureddine M. Position estimation approach by com- plementary filter-aided IMU for indoor environment[C]//Proc.of the 12 th Biannual European Control Conference, 2013 : 1 - 8.
  • 10Julier S,Uhlmann J.Unscented filtering and nonlinear estimation[J].Proc of the IEEE,2004,92(3): 401-422.

共引文献38

同被引文献228

引证文献23

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部