摘要
传统虚拟直流电机控制策略使变换器具有直流电机的外特性,提供了额外的惯性与阻尼支撑,但无法在并联系统中实现功率分配。此外,下垂控制策略可实现功率分配却无法为系统提供额外的惯性和阻尼。针对该问题,以Buck变换器为例,提出一种基于虚拟直流电机并联协调控制方法。通过对虚拟直流电机并联系统功率分配原理的分析,给出了并联系统的功率分配影响因素。同时,建立了所提的虚拟直流电机并联协调控制方法的小信号模型,分析了转动惯量、阻尼系数以及调差系数对系统稳态及动态特性的影响,给出了转动惯量、阻尼系数和调差系数的参数整定方法。最后,仿真与实验结果表明,相比传统的虚拟直流电机和下垂控制策略,该方法在暂态和稳态下均可实现虚拟直流电机并联协调控制,并可较好地抑制直流母线电压的波动。
A conventional virtual DC machine(VDCM)control strategy gives a converter the external characteristics of the DC machine,providing the additional inertia and damping support.However,it cannot achieve power distribution in a parallel system.Whereas,a droop control strategy can achieve power distribution but cannot provide additional inertia and damping for the system.For this issue,this paper takes a Buck converter as the example and proposes a parallel coordinated control method of VDCM.Based on the analysis of the power distribution principles of the VDCM parallel system,the detailed power distribution effect factors of the parallel system are given.In addition,by establishing the small-signal model of the VDCM parallel coordinated control method,the effects of the moment of inertia,damping coefficient,and adjustment coefficient on the steady/dynamic state characteristics of the system are analyzed in this paper,and the parameter setting principles of inertia,damping coefficient,and adjustment coefficient are given.Finally,the related simulation and experimental verification analysis show that compared with the traditional VDCM and droop control scheme,the proposed control method can realizes the coordination control of the VDCM parallel system in both transient and steady states,and it can better suppress the fluctuation of the DC bus voltage.
作者
王勉
唐芬
赵宇明
吴学智
牛靖凯
姜静雅
WANG Mian;TANG Fen;ZHAO Yuming;WU Xuezhi;NIU Jingkai;JIANG Jingya(National Active Distribution Network Technology Research Center,Beijing Jiaotong University,Haidian District,Beijing 100044,China;Collaborative Innovation Center of Electric Vehicles in Beijing(Beijing Jiaotong University),Haidian District,Beijing 100044,China;Shenzhen Power Supply Bureau Co.,Ltd.,Shenzhen 518020,Guangdong Province,China)
出处
《电网技术》
EI
CSCD
北大核心
2020年第10期3875-3884,共10页
Power System Technology
基金
北京市自然科学基金委–教委联合资助项目(KZ201911232045)
中国南方电网有限责任公司科技项目(090000KK52180116)。