期刊文献+

Synergetic catalytic removal of chlorobenzene and NOχfrom waste incineration exhaust over MnNb0.4Ce0.2Oχcatalysts:Performance and mechanism study 被引量:13

原文传递
导出
摘要 Nb doped MnCe0.2Ox complex oxides catalysts prepared via a homogeneous precipitation method were investigated for synergistic catalytic removal of NOx and chlorobenzene(CB)at low temperatures.The MnNb0.4Ce0.2Ox catalyst with a molar ratio of Nb/Mn=0.4 exhibits excellent activity and the NOx and CB removal efficiency reaches 94.5%and 96%at 220℃,respectively.Furthermore,the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox still remains above 80%after injecting 300 ppm SO2 and 7 vol%H2 O for 36 h.In addition,the presence of CB and NOx+NH3 can improve the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox,respectively.The analysis results from N2-BET,Py-IR,H2-TPR and NH3-TPD reveal that the introduction of Nb increases the average pore size,pore volume and surface area,promoted the growth of Lewis acid amount obviously,and enhances redox ability of MnCe0.2Ox at 100-250℃.Moreover,the molecular migration process of NOx,NH3,CB and SO2 in NH3-SCR and CB oxidation reaction over MnNb0.4Ce0.2Ox catalysts were systematically studied.In situ DRIFTS,FT-IR and XPS also confirm that the adsorption of sulfate species and SO2 on the surface of MnNb0.4Ce0.2Ox is inhibited effectively by the introduction of Nb in the presence of SO2 and H2 O.Moreover,Nb additives also enhance the structural stability of MnNb0.4Ce0.2Ox,due to the interactions among Mn,Nb and Ce.The NH3-TPD,H2-TPR and in situ DRIFTS results also confirm that the MnNb0.4Ce0.2Ox still retains abundant acid sites and high redox ability in the presence of SO2 and H2O.In summary,MnNb0.4Ce0.2Ox catalysts represent a promising and effective candidate for controlling NOx and CB at low temperatures.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第11期1178-1189,I0002,共13页 稀土学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(51902166) the Natural Science Foundation of Jiangsu Province(BK20190786 BK20170954) the Key Research and Development Program of Jiangsu Province(BE2018074) the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB430019) the Startup Foundation for Introducing Talent of NUIST(2017r073) the USA NIH/NIAID(R21AI107415) the NSF-PREM program(DMR 1827745) the Philadelphia Foundation。
  • 相关文献

参考文献3

二级参考文献6

共引文献15

同被引文献95

引证文献13

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部