期刊文献+

基于深度学习的眼底图像出血点检测方法 被引量:7

Detection method of hemorrhages of fundus image based on deep learning
原文传递
导出
摘要 提出了一种基于卷积神经网络(convolutional neural networks,CNN)加条件随机场(conditional random fields,CRF)的眼底图像出血点检测方法。首先,为了避免图像背景区域对后续检测的影响,参考眼底图像中的灰度信息并根据眼底中心位置到其边缘的长度,将图像调整到合适的尺寸,再对图像进行线性加权增强其亮度和对比度;然后,用裁剪到的图像块在仿照VGG网络构建的CNN架构上去训练检测出血点的CNN模型;最后,为了克服CNN模型在出血点检测中误检、漏检等问题,采用CRF对CNN模型输出的概率图进行后处理,以实现眼底图像出血点的精确检测。提出的检测方法在公开的Kaggle与Messidor数据库上进行训练和验证,获得了98.8%的准确率、99.4%的召回率和99.1%的F-score。另外,在DIARETDB1数据库上测试的灵敏度达到98.5%,F-score为96.1%。实验结果表明,从图像视觉和定量检测2个方面均说明了提出方法的有效性和优越性。 This paper proposes a method for detecting the bleeding point of fundus images based on convolutional neural networks(CNN)plus conditional random fields(CRF).First,in order to avoid the influence of the background area of the image on subsequent detection,refer to the gray level information in the fundus image and adjust the image to the appropriate size according to the length of the fundus center to its edge,and then linearly weight the image to enhance its brightness and contrast;then,using the cropped image block to train the CNN model for detecting the bleeding point on the CNN architecture built on the VGG network;finally,to overcome the problems of false detection and missed detection in the bleeding point detection of the CNN model,CRF is used for CNN.The probability map of the model output is post-processed to achieve accurate detection of the bleeding point of the fundus image.The detection method proposed in this paper was trained and verified on the open Kaggle and Messidor databases,and achieved 98.8%accuracy,99.4%recall rate and 99.1%F-score.In addition,the sensitivity tested on the DIARETDB1 database reached 98.5%and the F-score was 96.1%.The experimental results show that the effectiveness and superiority of the proposed method are illustrated from both image visual and quantitative detection.
作者 孟凡奎 银温社 贺建峰 MENG Fan-kui;YIN Wen-she;HE Jian-feng(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,Yunnan,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2020年第9期62-71,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11265007)。
关键词 糖尿病视网膜病变 出血点 眼底图像 卷积神经网络 条件随机场 diabetic retinopathy hemorrhages fundus image convolutional neural network conditional random field
  • 相关文献

参考文献4

二级参考文献44

  • 1Ravishankar S, Jain A, Mittal A. Automated feature extraction for early detection of diabetic retinopathy in fundus images [ C ] //International Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009:210-217.
  • 2Jaafar HF, Nandi AK, AI-Nuaimy W. Automated detection of red lesions from digital color fundus photographs [ C ] //33rd Annual International Conference of the Engineering in Medicine and Biology Society. Boston: IEEE, 2011 : 6232 - 6235.
  • 3Nutnaree K, Smith G, Bunyarit U. Automated retinal hemorrhage detection using morphological top hat and rule-based classification [ C ] //3rd International Conference on Intelligent Computational Systems. Singapore: IEEE, 2013:39-43.
  • 4Li Tang, Niemeijer M, Abramoff MD. Splat feature classification : detection of the presence of large retinal hemorrhages [ C] //8th International Symposium on Biomedical Imaging: From Nano to Macro. Chicago: IEEE, 2011:681 - 684.
  • 5Niemeijer M, Ginneken B, Staal J, et al. Automatic detection of red lesions in digital color fundus photographs [ J ]. IEEE Transactions on Medical Imaging, 2005, 24 (5) : 584 - 592.
  • 6Hatanaka Y, Nakagawa T, Hayashi Y, et al. CAD scheme to detect hemorrhages and exudates in ocular fundus images [ J]. SPIE Medical Imaging: Computer-Aided Diagnosis, 2007, 6514 (2) : 1 -8.
  • 7Hatanaka Y, Nakagawa T, Hayashi Y, et al. Improvement of automated detection method of hemorrhages in fundus images [ C] //30th Annual International Conference of the Engineering in Medicine and Biology Society. Vancouver: IEEE, 2008:5429 - 5432.
  • 8Saleh MD, Eswaran C. An automated decision-support system fornon-proliferative diabetic retinopathy disease based on MA and HA detection [ J ]. Computer Methods and Programs in Biomedicine, 2012, 108( 1 ) : 186 - 196.
  • 9Garcia M, Smchez CI, L6pez MI, et al. Automatic detection of red lesions in retinal images using a muhilayer perceptron neural network [ C ] //30th Annual International Conference of the Engineering in Medicine and Biology Society. Vancouver: IEEE, 2008 : 5425 - 5428.
  • 10Garea M, L6pez MI, .lvarez D, et aL Assessment of four neural network based classifiers to automatically detect red lesions in retinal images [ J]. Medical Engineering & Physics, 2010, 32 (10) : 1085 - 1093.

共引文献454

同被引文献64

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部