期刊文献+

基于卷积神经网络的图像拼接篡改检测算法 被引量:6

Image manipulation detection based on convolutional neural networks
原文传递
导出
摘要 为了进一步提高篡改检测率,提出了一种基于卷积神经网络(CNN)的图像篡改检测算法(SCNN)。虽然CNN能够直接从数据中学习分类特征,但是在其标准形式中,它倾向于学习与图像内容相关的特征。为了克服图像取证任务中的这一问题,提出了一种新的图像预处理层来共同抑制图像内容并自适应地学习特征。使用CASIA V2.0中75%的图像对SCNN进行训练和验证,并使用CASIA V2.0中的其余图像和哥伦比亚未压缩数据集中的所有图像进行测试。实验结果表明,本文SCNN框架明具有一定有效性及鲁棒性。 In order to further improve the tamper detection rate,this paper proposes an image tampering detection algorithm based on Convolutional Neural Network(CNN),which is called the spatial domain CNN model(SCNN). Although CNNs can learn classification features directly from data,in their standard form they tend to learn features related to image content. In order to overcome this problem in image forensics tasks,a new image preprocessing layer is proposed to jointly suppress image content and adaptively learn features. The SCNN is trained and validated using 75% of the images in CASIA v2.0,and all images in the uncompressed data set in Colombia are tested using the remaining images in CASIA v2.0.A large number of experiments show that the proposed SCNN framework has certain effectiveness and robustness.
作者 钟辉 李红 李振建 欧阳若川 闫冬梅 ZHONG Hui;LI Hong;LI Zhen-jian;OUYANG Ruo-chuan;YAN Dong-mei(Management Center of Big Data and Network,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第4期1428-1434,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省省级产业创新专项资金项目(2017C031-4) 赛尔网络下一代互联网技术创新项目(NGII20180104,NGII20181202)。
关键词 多媒体取证 卷积神经网络 篡改检测 拼接图像 特征提取 multimedia forensics convolutional neural networks image manipulation detection splicing image feature extraction
  • 相关文献

参考文献2

二级参考文献49

  • 1王丹,张祥合.基于HOG和SVM的人体行为仿生识别方法[J].吉林大学学报(工学版),2013,43(S1):489-492. 被引量:9
  • 2吴金海,林福宗.基于数字水印的图像认证技术[J].计算机学报,2004,27(9):1153-1161. 被引量:70
  • 3朱秀明,宣国荣,姚秋明,童学锋,施云庆.信息取证中图像重采样检测[J].计算机应用,2006,26(11):2596-2597. 被引量:7
  • 4戴蒙,林家骏,毛家发.JPEG二次压缩的分析与检测[J].中国图象图形学报,2006,11(11):1619-1622. 被引量:6
  • 5Celik M U, Sharma G, Saber E, Tekalp A M. Hierarchical watermarking for secure image authentication with localization. IEEE Transactions on Image Processing, 2002, 11(6): 585-595
  • 6Zhu B B, Swanson M D, Tewfik A H. When seeing isn't believing. IEEE Signal Processing Magazine, 2004, 21(2): 40-49
  • 7Wu Q, Li G H, Tu D. An image authentication watermarking with self-localization and recovery. In: Proceedings of the 11th Joint International Computer Conference. Chongqing, China: World Scientific, 2005. 960-963
  • 8Ng T T, Chang S F, Sun Q B. Blind Detection of Digital Photomontage Using Higher Order Statistics, Advent Technical Report 201-2004-1, Columbia University, June 2004
  • 9Khanna N, Mikkilineni A K, Martone A F, Ali G N, Chiu G T C, Allebach J P. A survey of forensic characterization methods for physical devices. In: Proceedings of the 6th Annual Digital Forensics Research Workshop. Lafayette, USA: Elsevier, 2006. 17-28
  • 10Sencar H T, Memon N. Overview of state-of-the-art in digital image forensics. Part of Indian Statistical Institute Platinum Jubilee Monograph Series Titled Statistical Science and Interdisciplinary Research. USA: World Scientific Press, 2008

共引文献62

同被引文献24

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部