期刊文献+

用于样本聚类和网络分析的整合鲁棒结构化NMF模型 被引量:1

Integrated Robust Structured NMF Model for Sample Clustering and Network Analysis
在线阅读 下载PDF
导出
摘要 为了更好地保留数据之间的同质性,提出了一种整合鲁棒结构化非负矩阵分解(integrated robust structured non-negative matrix factorization,iRSNMF)模型,并在该模型中引入一个结构化项.将该模型用于癌症样本聚类实验和基因共表达网络分析,以验证其有效性.根据现有文献对相关基因和通路进行生物学解释.实验结果表明,iRSNMF模型聚类性能较好并且能够挖掘到的关键基因更多.用iRSNMF模型获得的基因和通路在癌症的发病机制中起着重要作用,并为癌症诊断、治疗和预后提供了新的思路. In order to preserve the homogeneity among data more effectively,this paper proposes an integrated robust structured non-negative matrix factorization(integrated robust structured non-negative matrix factorization,iRSNMF)model with an induced structured term.We verify the effectiveness of this model by applying it to the clustering experiments of cancer samples and the analysis of gene co-expression network.Reasonable biological explanations of related genes and pathways are given based on existing literature.Experimental results show that the iRSNMF method has excellent clustering performance and more-key genes mining ability.The genes and pathways obtained by the iRSNMF model play an important role in cancer pathogenesis,accordingly,providing a new idea for the diagnosis,treatment and prognosis of cancer.
作者 张晓宁 孔祥真 罗传文 刘金星 ZHANG Xiaoning;KONG Xiangzhen;LUO Chuanwen;LIU Jinxing(School of Computer,Qufu Normal University,Rizhao 276826,Shandong,China;School of Information,Beijing Forestry University,Beijing 100083,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2020年第5期825-842,共18页 Journal of Applied Sciences
基金 国家自然科学基金(No.61872220,No.61702299)资助。
关键词 整合模型 结构化 非负矩阵分解 样本聚类 基因共表达网络分析 integrated model structured non-negative matrix factorization sample clustering gene co-expression network analysis
  • 相关文献

参考文献5

二级参考文献32

  • 1Lee D, Seung H. Learning the Parts of Objects by Non-negative Matrix Factorization[J]. Nature, 1999, 401(6755): 788-797.
  • 2Xu Wei, Liu Xin, Gong Yihong. Document Clustering Based on Non-negative Matrix Factorization[C] //Proc. of the 26th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2003: 267-273.
  • 3Lee D, Seung H. Algorithms for Non-negative Matrix Factorization[M]. Cambridge, USA: MIT Press, 2001: 556-562.
  • 4Ding C, Li Tao, Peng Wei, et al. Orthogonal Nonnegative Matrix Tri-factorizations for Clustering[C] //Proc. of the 12th International ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2006: 126-135.
  • 5Wagstaff K, Cardie C. Clustering with Instance-level Constraints[C] //Proc. of the 17th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers, 2000: 1103-1110.
  • 6Ma Huifang, Zhao Weizhong, Tan Qing, et al. Orthogonal Nonnegative Matrix Tri-factorization for Semi-supervised Document Co-clustering[C] //Proc. of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Hyderabad, India: [s. n.] , 2010: 189-200.
  • 7Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means Clustering with Background Knowledge[C] //Proc. of the 18th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers, 2001: 577-584.
  • 8Dhillon I S, Mallela S, Modha D S. Information-theoretic Co-clustering[C] //Proc. of the 9th International ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington D. C., USA: ACM Press, 2003: 89-98.
  • 9杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展,2007,44(7):1121-1127. 被引量:15
  • 10GOLUH T R, SLONIM D K, TAMAYO p, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999, 286 (5439): 531-537.

共引文献45

同被引文献16

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部