期刊文献+

Bifurcations and chaos control in a discrete-time biological model

原文传递
导出
摘要 In this papcr,bifurcations and chaos control in a discrete-time Lotka-Volterra predator-prey model have been studied in quadrant-I.It is shown that for all parametric values,model hus boundary equilibria:P00(0,0),Px0(1,0),and the unique positive equilibrium point:P^+xy(d/c,r(c-d)/bc) if c>d.By Linearization method,we explored the local dynamics along with different topological classifications about equilibria.We also explored the boundedness of positive solution,global dynamics,and existence of prime-period and periodic points of the model.It is explored that flip bifurcation occurs about boundary equilibria:Poo(0,0),P.o(1,0),and also there exists a flip bifurcation when parameters of the discrete-time model vary in a small neighborhood of P^+xy(d/c,r(c-d)/bc).Further,it is also explored that about P^+xy(d/c,r(c-d)/bc) the model undergoes a N-S bifurcation,and meanwhile a stable close invariant curves appears.From the perspective of biology,these curves imply that betwecn predator and prey populations,there exist periodic or quasi-periodic oscillations.Some simulations are presented to illustrate not only main results but also reveals the complex dynamics such as the orbits of period-2,3,13,15,17 and 23.The Maximum Lyapunov exponents as well as fractal dimension are computed numeri-cally to justify the chaotic behaviors in the model.Finally,feedback control method is applied to stabilize chaos existing in the model.
出处 《International Journal of Biomathematics》 SCIE 2020年第4期1-31,共31页 生物数学学报(英文版)
基金 This work was supported by the Higher Education Cominission of Pakistan.
  • 相关文献

参考文献2

二级参考文献12

  • 1CHEN Fengde. Permance and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems [J]. Appl. Math. Comput., 1991, 59: 804-814.
  • 2FAN Meng, WANG Qian. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems [J]. Discrete Contin. Dyn. Syst. Ser. B, 2004, 4(3): 563-574.
  • 3FAN Meng, WANG Ke. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J]. Math. Comput. Modelling, 2002, 35(9-10): 951-961.
  • 4DAI Binxiang, ZOU Jiezhong. Periodic solutions of a discrete-time nonautonomous predator-prey system with the Beddington-DeAngelis functional response [J]. J. Appl. Math. Comput., 2007, 24(1-2): 127-139.
  • 5HUO Haifeng, LI Wantong. Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model [J]. Math. Comput. Modelling, 2004, 40(3-4): 261-269.
  • 6YANG Xitao. Uniform persistence and periodic solutions for a discrete predator-prey system with delays [J]. J. Math. Anal. Appl., 2006, 318(i): 161-177.
  • 7FAN Yonghong, LI Wantong. Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response [J]. J. Math. Anal. Appl., 2004, 9.99(2): 357-374.
  • 8WANG Qian, FAN Meng, WANG Ke. Dynamics of a class of nonautonornous semi-ratio-dependent predatorprey systems with functional responses JONES B. On a class of singular integrals [J]. Amer. J. Math., 1964, 86: 441-462. J. Math. Anal. Appl., 2003, 278(2): 443-471.
  • 9ARROWSMITH D K, PLACE C M. Dynamical Systems: Differential Equations, Maps and Chaotic Behaviour [M]. Chapman & Hall, London, 1992.
  • 10BELTRAMI E. Mathematics for Dynamical Modelling [M]. Academic Press, Boston, MA., 1987.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部