期刊文献+

Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input 被引量:2

在线阅读 下载PDF
导出
摘要 Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1437-1445,共9页 自动化学报(英文版)
基金 supported by the National Key Research andDevelopment Program of China(2017YFA0700300) the National Natural Sciences Foundation of China(61533005,61703071,61603069)。
  • 相关文献

参考文献3

二级参考文献4

共引文献18

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部