期刊文献+

融合自注意力机制和BiGRU网络的微博情感分析模型 被引量:14

Microblog Sentiment Analysis Model with the Combination of Self-attention and BiGRU
在线阅读 下载PDF
导出
摘要 基于微博文本的情感分析已经成为近些年的研究热点.为了更有效分析微博文本的情感极性,实现将表情符的情感表现加入到文本分类的任务中,提出了一种将深度学习与情感符号相结合的学习方法.该方法利用双向门控循环(BiGRU)神经网络对文本进行特征提取,然后利用自注意力机制对文本和表情符号的向量表示进行特征提取,最后通过softmax识别出最终的情感极性.本文采集了三种微博语料集,实验结果表明,与融合表情符的自注意力机制和BiLSTM模型和与仅输入纯文本的自注意力机制和BiGRU模型相比,融合表情符号的自注意力机制和BiGRU网络模型有效地提高了情感分类的准确率. Recently,sentiment analysis of Microblog has become a hot research topic.In order to analyze the sentiment polarity of the microblog text more effectively,and realize the task of adding the sentiment polarity of emoji to sentiment classification,this paper proposed a learning method combining deep learning with emotional symbols.This method uses the bidirectional Gated Recurrent Unity(BiGRU)neural network to extract the features of plain text,and then uses the self-attention mechanism to obtains a new feature representation,finally recognize the final sentiment polarity of the microblogs text by softmax.The experiments result on three microblog corpuses collected show that compared with the self-attention and BiLSTMmodels and the self-attention and BiGRU model that only inputs plain text,the self-attention and BiGRU models effectively improves the classification accuracy.
作者 陈亚茹 陈世平 CHEN Ya-ru;CHEN Shi-ping(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第8期1590-1595,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61472256,61170277)资助 上海市一流学科建设项目(S1201YLXK)资助 上海理工大学科技发展基金项目(16KJFZ035,2017KJFZ033)资助 沪江基金项目(A14006)资助。
关键词 情感分析 表情符 自注意力机制 双向门控循环神经网络 sentiment analysis emoji self-attention mechanism bidirectional Gated Recurrent Unity(BiGRU)
  • 相关文献

参考文献4

二级参考文献36

  • 1Jansen B J, Zhang M, Sobel K, Chowdury A. Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 2009, 60(11): 2169-2188.
  • 2Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1): 1-8.
  • 3Zhao J, Dong L, Wu J, Xu K. MoodLens: An emoticon- based sentiment analysis system for Chinese tweets. In Proc. the 18th KDD, Aug. 2012, pp.1528-1531.
  • 4Jiang L, Yu M, Zhou M, Liu X, Zhao T. Target-dependent Twitter sentiment classification. In Proc. the 49th ACL, Jun. 2011, pp.151-160.
  • 5Liu K L, Li W J, Guo M. Emoticon smoothed language models for Twitter sentiment analysis. In Proe. the 26th AAAI. Jul. 2012.
  • 6Bermingham A, Smeaton A F. Classifying sentiment in mi- croblogs: Is brevity an advantage? In Proc. the 19th ACM International Conference on Information and Knowledge Management, Oct. 2010, pp.1833-1836.
  • 7Kouloumpis E, Wilson T, Moore J. Twitter sentiment anal- ysis: The good the bad and the OMG! In Proc. the 5th ICWSM, Jul. 2011.
  • 8Barbosa L, Feng J. Robust sentiment detection on Twitter from biased and noisy data. In Proc. the 23rd International Conference on Computational Linguistics: Posters, Aug. 2010, pp.36-44.
  • 9Pak A, Paroubek P. Twitter as a corpus for sentiment anal- ysis and opinion mining. In Proe. LREC, May 2010.
  • 10Go A, Bhayani R, Huaag L. Twitter sentiment classifica- tion using distant supervision. Technical Report, Stanford University, 2009.

共引文献182

同被引文献96

引证文献14

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部