摘要
采用热重差热分析法和傅里叶变换红外光谱分析联用的方法(TG-FTIR)研究淬火油泥(QOS)的热解过程,解析了热解过程的动力学特性,分析了其中的矿物油(MO)和残渣(SR)在QOS热解过程中的相互作用。实验结果表明:QOS热解过程包含油分热解阶段和矿物质分解阶段;低温段热解温度为150~520 ℃,高温段热解温度为800~980 ℃;SR的热解过程分为油分热解反应和残渣中Fe2O3的还原反应;MO的热解过程只有轻质油分的挥发和重质油分的热解。FTIR表征结果显示:QOS热解过程析出的气体主要为CO2、CO和有机化合物;SR热解过程中CO2的特征峰强度高于其他气体的特征峰强度;MO热解过程中烷烃的特征峰强度高于其他气体的特征峰强度,且MO主要以轻质油分为主。在QOS的热解过程中,初温~480 ℃时,SR所含的Fe2O3对MO的热解起促进作用,300 ℃左右时促进效果最明显。
The pyrolysis process of quenching oil sludge(QOS)was studied by thermogravimetric analysis-Fourier transform infrared spectrometer(TG-FTIR).Its kinetic characteristics,as well as interactions between mineral oil(MO)and solid residues(SR)were analyzed.The experimental results indicate that:The pyrolysis process of QOS contained two stages of oil pyrolysis and mineral decomposition,where in the low temperature pyrolysis is conducted at 150-520℃and the high temperature pyrolysis is conducted at 800-980℃;The pyrolysis process of SR is divided into pyrolysis of oil and reduction of Fe2O3 in the residue;The pyrolysis process of MO only contained the volatilization of light oil and the pyrolysis of heavy oil.The FTIR analysis results show that:The main gases released from QOS pyrolysis are CO2,CO and organic compound;The characteristic peak intensity of CO2 during SR pyrolysis is higher than those of other gases;The characteristic peak intensity of alkanes in MO pyrolysis is higher than those of other gases,and MO is mainly light oil.During the QOS pyrolysis process,Fe2O3 in SR promoted the pyrolysis of MO below 480℃,and the promotion effect is most obvious at about 300℃.
作者
袁朝兵
李长江
林顺洪
杨宇
YUAN Chaobing;LI Changjiang;LIN Shunhong;YANG Yu(College of Mechanical and Power Engineering,Chongqing University of Science and Technology,Chongqing 401331,China;Chongqing Waste to Energy Research&Technology Institute,Chongqing 401331,China)
出处
《化工环保》
CAS
CSCD
北大核心
2020年第4期382-387,共6页
Environmental Protection of Chemical Industry
基金
重庆市教委科学技术研究项目(KJQN201901521)
重庆科技学院生活垃圾资源化处理协同创新中心项目(shlizyh 2018-004)。
关键词
淬火油泥
热解
矿物油
残渣
反应动力学
quenching oil sludge
pyrolysis
mineral oil
residue
reaction kinetic