摘要
针对车用驱动电机在提高功率密度过程中的冷却问题,以某型号水冷永磁同步电机为研究对象,建立三维流固耦合传热数值仿真模型,采用有限体积法对电机温度场和水道流场进行求解,并用试验数据对计算结果进行验证。在此基础上,计算不同冷却介质入口温度和流量、介质类型、冷却流道截面形状和圈数下电机内部的流动传热情况,以电机温度场、流道压降等参数作为评价指标对不同条件下的冷却性能进行评价分析。研究结果表明:随着冷却介质入口温度的降低或入口流量的增大,电机各部件的温度显著下降,但增大流量会使泵功指数增加;分别以冷却油、乙二醇水溶液、水作为冷却介质时,相同流量下的散热功率依次增大,而压降则依次降低;机壳上的螺旋形流道圈数越多,散热功率和压降均越大;保持流道截面积不变,改变截面形状对电机温度影响较小,但对压降有较大影响,其影响与换热面积相关。
Aiming at the effective cooling for high power density automotive driving motors, a 3 D coupled fluidsolid heat transfer numerical model was established for a water-cooled permanent magnet synchronous motor, and the temperature field and flow field within the motor were solved by using finite volume method. The model was verified by experimental data. On this basis, heat transfer and flow characteristics at different coolant inlet temperatures and flow rates, and of coolant types, cross-section shapes and the number of laps of the coolant channel were calculated. The cooling performance was evaluated by taking motor temperature field and pressure loss of the cooling channel as evaluation indicators. The results show that with the decrease of coolant inlet temperature or the increase of flow rate, the temperature of motor parts decreases. Increasing coolant flow rate will make the pump power increase exponentially. Using cooling oil, ethylene glycol solution and water as the coolant separately, the heat dissipation power at the same flow rate increases and the pressure drop decreases successively.The more the laps of the spiral cooling channel in the housing, the greater the heat dissipation rate and pressure drop. When keeping the cross-sectional area of the flow channel unchanged, changing the shape of the cooling channel cross section has little influence on the temperature of the motor but has great influence on the pressure drop, which is related to the heat transfer area of the cooling channel.
作者
刘慧军
陈芬放
黄瑞
常晋伟
韦靖邦
俞小莉
LIU Huijun;CHEN Fenfang;HUANG Rui;CHANG Jinwei;WEI Jingbang;YU Xiaoli(College of Energy Engineering,Zhejiang University,Hangzhou 310027,China;Zotye Automotive Engineering Research Institute,Hangzhou 310018,China)
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2020年第7期2002-2012,共11页
Journal of Central South University:Science and Technology
基金
浙江省科技计划项目(2018C01057)
中央高校基本科研业务费专项资金资助项目(2020QNA4008)
浙江大学高等教育“十三五”第二批教学改革研究项目(ZDJG19091)。
关键词
驱动电机
冷却系统
传热
流动
温度场
driving motor
cooling system
heat transfer
flow
temperature field