期刊文献+

基于符号距离和交叉熵的概率犹豫模糊多属性决策方法 被引量:21

Probabilistic hesitant fuzzy multi-attribute decision method based on signed distance and cross entropy
原文传递
导出
摘要 针对概率犹豫模糊环境下属性权重完全未知的多属性决策问题,提出基于符号距离和交叉熵的多属性决策方法.首先,定义用于测量决策者犹豫程度的3种概率犹豫模糊元的犹豫度:数值犹豫度,信息不完全度和总犹豫度,基于3种犹豫度提出概率犹豫模糊符号距离;然后,为了避免人为添加元素,定义调和概率犹豫模糊元,并结合信息不完全度提出概率犹豫模糊元的交叉熵;最后,根据概率犹豫模糊元的符号距离和交叉熵构建多属性决策模型,并通过算例验证了该模型的有效性和合理性. A multi-attribute decision making method based on signed distance and cross entropy is proposed for multiattribute decision making problems in which the attribute weights are completely unknown under the probabilistic hesitant fuzzy environment.Firstly,the three kinds hesitation degree of probability hesitant fuzzy elements used to measure the degree of hesitancy of decision makers is proposed:Numerical hesitation degree,information incomplete degree and total hesitation degree.The probability hesitant fuzzy signed distance is proposed based on three hesitation degrees.Then,in order to avoid artificially adding elements,the adjusted probabilistic hesitant fuzzy element is defined,it combines with the incomplete degree of information to propose the cross entropy of the probabilistic hesitant fuzzy element.Finally,the multi-attribute decision model is constructed based on the signed distance and cross entropy of the probabilistic hesitant fuzzy element,and the e?ectiveness and rationality of the model are illustrated by an example.
作者 朱峰 徐济超 刘玉敏 孙静静 ZHU Feng;XU Ji-chao;LIU Yu-min;SUN Jing-jing(School of Management Engineering,Zhengzhou University,Zhengzhou 450001,China;Business of School,Zhengzhou University,Zhengzhou 450001,China)
出处 《控制与决策》 EI CSCD 北大核心 2020年第8期1977-1986,共10页 Control and Decision
基金 国家自然科学基金项目(71672182 71711540309 U1604262)。
关键词 多属性决策 概率犹豫模糊元 犹豫度 符号距离 交叉熵 信息不完全度 调和概率犹豫模糊元 multi-attribute decision-making probabilistic hesitant fuzzy element hesitation degree signed distance cross entropy information incomplete degree adjusted probabilistic hesitant fuzzy element
  • 相关文献

参考文献6

二级参考文献41

  • 1Torra V, Narukawa Y. On hesitant fuzzy sets and decision[C]. The 18th IEEE Int Conf on Fuzzy Systems. Jeju Island, 2009: 1378-1382.
  • 2Torra V. Hesitant fuzzy sets[J]. Int J of Intelligent Systems, 2010, 25(6): 529-539.
  • 3Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 4Dubois D, Prade H. Fuzzy sets and systems: Theory and applications[M]. New York: Academic Press, 1980: 30-32.
  • 5Yager R R. On the theory of bags[J]. Int J of General Systems, 1986, 13(1): 23-37.
  • 6Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 7Zhang N, Wei G W. Extension of VIKOR method for decision making problem based on hesitant fuzzy set[J]. Applied Mathematical Modelling, 2013, 37(7): 4938-4947.
  • 8Xu Z S, Xia M M. Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making[J] Int J of Intelligent Systems, 2012, 27(9): 799-822.
  • 9Xu Z S, Xia M M. On distance and correlation measures of hesitant fuzzy information[J]. Int J of Intelligent Systems, 2011, 26(5): 410-425.
  • 10Chen N, Xu Z S, Xia M M. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis[J]. Applied Mathematical Modelling, 2013, 37(4): 2197-2211.

共引文献77

同被引文献116

引证文献21

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部