期刊文献+

基于递归特征消除和随机森林融合算法的大豆前体MicroRNA预测模型研究 被引量:5

Research on Soybean Pre-Micro RNA Prediction Model Based on Recursive Feature Elimination and Random Forest Fusion Algorithm
在线阅读 下载PDF
导出
摘要 随着大豆RNA基因的生物调控作用研究的不断深入,利用数据挖掘技术对大豆前体MicroRNA(pre-microRNA)进行有效的预测已成为该领域的重要发展方向。针对常规的随机森林算法在pre-microRNA预测模型中存在识别精度较低的问题,研究提出并构建基于递归特征消除(recursive feature elimination, RFE)与随机森林(random forest, RF)融合算法的大豆pre-microRNA预测模型。首先利用递归特征消除法筛选大豆pre-microRNA序列的最优特征子集;然后结合随机森林算法构建大豆pre-microRNA的预测模型;最后利用十折交叉验证法,将递归特征消除与随机森林(RFE-RF)融合模型的预测结果与单一随机森林和支持向量机分类模型的预测结果对比。研究结果表明:融合后构建的大豆pre-microRNA预测模型精度有明显提高,达到84.62%,相比于支持向量机算法(support vector machine, SVM)构建的模型精度提高了17.02%,相比于单独使用随机森林算法构建的模型精度提高了14.58%。该研究方法为大豆的pre-microRNA基因预测提供了新思路。 With the continuous in-depth research on the biological regulatory effects of small genes in soybean, the use of data mining technology to effectively predict the pre-MicroRNA of soybean has become an important development direction in this field. To solve the problem that conventional Random Forest(RF) algorithm has low recognition accuracy in pre-MicroRNA prediction model, this study proposed and constructed a soybean pre-microRNA prediction model based on Recursive Feature Elimination(RFE) and RF fusion algorithm. Firstly, we used the RFE method to select the optimal feature subset of soybean pre-MicroRNA sequences. Then, we constructed a prediction model of soybean pre-MicroRNA based on RF algorithm. Finally, we compared the prediction results of the RFE-RF fusion model with the prediction results of the single RF and Support Vector Machine(SVM) classification model. The results showed that the accuracy of the soybean Pre-MicroRNA prediction model constructed after fusion was significantly improved, reaching 84.62%, 17.02% higher than the model constructed by SVM algorithm, and 14.58% higher than the model constructed by RF algorithm alone. This method provides a new idea for the prediction of pre-MicroRNA genes in soybean.
作者 安宇 陈桂芬 李静 AN Yu;CHEN Gui-fen;LI Jing(College of Information Technology,Jilin Agricultural University,Changchun 130118,China)
出处 《大豆科学》 CAS CSCD 北大核心 2020年第3期401-405,共5页 Soybean Science
基金 国家星火计划(2015GA660004) 吉林省重点科技研发项目(20180201073SF)。
关键词 大豆 Pre-microRNA 递归特征消除 随机森林 预测模型 Soybean Pre-MicroRNA Recursive Feature Elimination(RFE) Random Forest(RF) Prediction model
  • 相关文献

参考文献8

二级参考文献117

  • 1张丽新,王家钦,赵雁南,杨泽红.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184. 被引量:18
  • 2王芳,余佳,张俊武.小RNA(MicroRNA)研究方法[J].中国生物化学与分子生物学报,2006,22(10):772-779. 被引量:14
  • 3张旗,何湘君,潘秀英.RNA加尾和引物延伸RT-PCR法实时定量检测microRNA[J].北京大学学报(医学版),2007,39(1):87-91. 被引量:23
  • 4Shao-Yao Ying. Micro RNA protocols [ M ]. Totowa, New Jersey: Humana Press ,2006.
  • 5Rossi J J,Harmon G J.MicroRNA研究方法[M].北京:科学出版社,2008.
  • 6Grad Y, Aach J, Hayes G D, et al. Computational and experimental identification of C. e!egans microRNAs [ J ]. Molecular Cell, 2003, 11(5) :1253-1263.
  • 7Ambros. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing[ J]. Cell. 2003,113 ;673-676.
  • 8Alvarez G I , Miska E A. MicroRNA functions in animal development and human disease [J]. Development,2005,132 (21) : 4653-4662.
  • 9Lau P, Hudson L, Murashov A K, et al. MicroRNA and siRNA cloning method[ J]. Science ,2005,294:858-862.
  • 10Fujii H,Chiou T J,Lin S I,et al. A miRNA Involved in phosphate-starvation response in arabidopsis [ J ]. Current Biology, 2005,15 : 2038-2043.

共引文献61

同被引文献62

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部