摘要
通过收集北京市2010~2016年逐日呼吸和心脑血管疾病死亡数据、污染物(BC、PM2.5、SO2、O3和NO2)日均浓度资料以及同期的气象资料,采用广义相加模型(GAMs)中的主效应模型、非参数二元响应模型和温度分层模型探讨了北京市气温、PM2.5和BC单效应,以及气温与PM2.5和BC交互作用分别对呼吸和心脑血管疾病死亡人数的影响.单效应分析结果表明,气温与两种疾病死亡人数的累计暴露-反应关系均呈"J"型分布特征,最适温度为24℃;累计滞后一天情况下PM2.5和BC的健康效应均最显著,此时PM2.5和BC浓度每升高四分位间距(IQR),呼吸系统疾病死亡人数超额增加百分比(ER)分别为2.21%和1.80%,心脑血管疾病死亡人数ER分别为2.02%和1.48%.交互作用的研究结果表明,高温与高浓度的PM2.5(或BC)对疾病死亡的影响存在协同效应,且高温条件下BC对疾病死亡影响的健康风险大于PM2.5,当气温大于24℃时,BC和PM2.5浓度每升高IQR对应的呼吸系统疾病死亡人数ER分别为6.22%和6.17%,心脑血管疾病死亡人数ER分别为5.01%和3.97%.虽然BC只占PM2.5的一部分,但BC对人群健康的影响不容忽视,应该引起足够的重视.
Daily death data of respiratory and cardiovascular diseases during 2010~2016, daily average air pollutants(including black carbon [BC], particulate matter with aerodynamic less than 2.5 [PM2.5], sulfur dioxide [SO2], ozone [O3], and nitrogen dioxide [NO2]) and meteorological data during the same period in Beijing were collected. Three semi-parametric Generalized Additive Models(GAMs), including an independent model, a nonparametric bivariate response surface model, and a stratification parametric model, were adopted to explore the adverse health effects of temperature, different-sized particles(BC and PM2.5) and the synergistic effects between temperature and particles on respiratory and cardiovascular system diseases, respectively. The results of single-effect studies showed that the exposure-response relationships between ambient temperature and respiratory and cardiovascular diseases both exhibited "J" type and the most comfortable temperature is 24℃. The health risks were strongest between the current and previous day(lag01) average concentrations of BC and PM2.5(Lag01). An interquartile range(IQR) increments in BC(4.11μg/m3) and PM2.5(62.4μg/m3) were associated with 1.80% and 2.21% increase in respiratory mortality and 1.48% and 2.02% increases in cardiovascular mortality, respectively. The combined effects between particles and temperature on human health suggested that the mortality reach the maximum when high temperature and high mass concentrations of PM(BC and PM2.5) coexisted. Furthermore, the modulating effects of temperature on BC-mortality relationship becoming more pronounced under high temperature conditions than that on PM2.5-mortality relationships with temperature cutoff increasing. IQR increments in BC and PM2.5 were associated with 6.96% and 6.50% increases in respiratory mortality and 6.14% and 4.54% increases in cardiovascular mortality when temperature>26℃. We should pay more attention to the adverse effect of BC on human health in the future.
作者
张莹
辛金元
张小玲
倪长健
马盼
王式功
冯鑫媛
胡文东
郑灿军
ZHANG Ying;XIN Jin-yuan;ZHANG Xiao-ling;NI Chang-jian;MA Pan;WANG Shi-gong;FENG Xin-yuan;HU Wen-ding;ZHENG Can-jun(Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Institute of Meteorological Environment and Public Health,School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,China;State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;Institute of Urban Meteorology,China Meteorological Administration,Beijing 100089,China;Chinese Center for Disease Control and Prevention,Beijing 102206,China)
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2020年第7期3179-3187,共9页
China Environmental Science
基金
国家重点研发计划项目(2016YFA0602004)
上海市气象与环境重点实验室开放基金资助项目(QXJK201601)
国家自然科学基金资助项目(91644226)。
关键词
气温
黑碳
PM2.5
协同效应
疾病死亡
temperature
black carbon
particulate matter
synergistic effect
mortality