期刊文献+

基于强化学习的无人驾驶仿真研究

Research on Unmanned Driving Simulation Based on Reinforcement Learning
在线阅读 下载PDF
导出
摘要 提出一种基于强化学习的无人驾驶仿真方案,采用Deep Q-Learning算法,设置经验池来对驾驶策略进行学习,设计了控制策略和动作策略来控制虚拟环境下的驾驶仿真。在无人驾驶仿真平台TORCS上进行了仿真实验,对无人驾驶进行训练,训练结果验证了该算法的有效性与可行性。该强化学习算法对无人驾驶仿真提供了可行方案的参考结论。 An unmanned driving simulation scheme based on reinforcement learning is proposed.Deep Q-Learning algorithm is used to set up experience pool to learn driving strategy.Control strategy and action strategy are designed to control driving simulation in virtual environment.The simulation experiment is carried out on the unmanned driving simulation platform TORCS,and the unmanned driving is trained.The training results verify the validity and feasibility of the algorithm.The conclusion that the reinforcement learning algorithm provides a feasible scheme for the unmanned driving simulation is drawn.
作者 孙嘉浩 陈劲杰 Sun Jiahao;Chen Jinjie(University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《农业装备与车辆工程》 2020年第6期102-106,共5页 Agricultural Equipment & Vehicle Engineering
关键词 无人驾驶 强化学习 Deep Q-Learning 驾驶仿真 TORCS unmanned driving reinforcement learning Deep Q-Learning driving simulation TORCS
  • 相关文献

参考文献6

二级参考文献20

  • 1Pan Zhigeng, Cheok, Adrian David, et al. Virtual reality and mixed reality for virtual learning environments[J ]. Computers & Grpahie,2006,30(1) :20 - 28.
  • 2Guo Tiantai, Zhou Xiaojun, Zhu Genxin. Application of cbr in VR- based test and simulation system [ C ]//Proceedings of 2003 International Conference on Machine Learning and Cybernetics. Xi - an: Springer Berlin Heidelberg, 2003:2 337 - 2 340.
  • 3Vicente Marti Centelles. Build your track for TORCS in 20 min utes[EB/OL]. [2007 - 04 - 01 ]. http://usuarios. multimania. es/fltorcs/build _your_ trocs_ track_ in _20 _minutes .pdf.
  • 4Wilson J R, Cruz M D. Virtual and interactive environments for work of the future[J]. International Journal of Human- Computer Studies, 2006 (3) : 158 - 169.
  • 5Guo Tiantai. Research on the Theory and Applications of VR - based Testing[ D]. Hangzhou: Zhejiang University, 2005.
  • 6任禾.无人驾驶[J].中国经济和信息化,2013(12):87-89. 被引量:5
  • 7张朋飞,何克忠,欧阳正柱,张军宇.多功能室外智能移动机器人实验平台—THMR-V[J].机器人,2002,24(2):97-101. 被引量:46
  • 8陈慧,徐建波.智能汽车技术发展趋势[J].中国集成电路,2014,23(11):64-70. 被引量:35
  • 9熊光明,李勇,王诗源.基于有限状态机的智能车辆交叉口行为预测与控制[J].北京理工大学学报,2015,35(1):34-38. 被引量:16
  • 10张荷芳,豆菲菲.多传感器信息融合的无人车行驶策略[J].计算机与数字工程,2015,43(3):392-395. 被引量:3

共引文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部