摘要
采用单辊快淬法制备一系列不同名义成分的FeZrB合金样品,并在第1个晶化峰值温度进行退火。利用同步热分析仪(STA)、X射线衍射仪(XRD)、透射电镜(TEM)和振动样品磁强计(VSM)测试合金的热曲线、微观结构和磁性能。初始晶化相随着FeZrB系列合金成分比例的改变而不同。在不同成分比例的合金中观察到4组不同的初始晶化相,例如α-Fe,α-Fe+Fe12Si2ZrB,α-Fe+α-Mn和α-Fe+Fe2B+ZrB。通过TEM观察发现具有不同初始晶化产物的合金具有不同的形貌。具有不同初始晶化产物合金的饱和磁化强度(Ms)和矫顽力(Hc)存在以下关系:Ms(α-Fe)>Ms(α-Fe+α-Mn type)>Ms(α-Fe+Fe2B+ZrB)>Ms(α-Fe+Fe12Si2ZrB-type),Hc(α-Fe+α-Mn type)>Hc(α-Fe+Fe2B+ZrB)>Hc(α-Fe+Fe12Si2ZrB-type)>Hc(α-Fe)
A series of FeZrB alloys with different nominal composition were prepared by melt-spinning and then annealed at their first crystallization temperatures.The thermal curve,microstructure and magnetic property of the alloys were investigated by simultaneous thermal analyzer(STA),X-ray diffraction(XRD),transmission electron microscopy(TEM)and vibrating sample magnetometer(VSM).The results show that the primary crystallization phases are different with the composition of FeZrB alloys changing.Four groups of primary crystallization phases can be observed in the alloys,i.e.α-Fe phase,α-Fe+Fe12Si2ZrB type phases,α-Fe+α-Mn type phases andα-Fe+Fe2B+ZrB phases,and their morphologies are different observed by TEM.The relations of saturation magnetization(Ms)and coercivity(Hc)for the alloys with different primary crystallization phases are as follows:Ms(α-Fe)>Ms(α-Fe+α-Mn type)>Ms(α-Fe+Fe2B+ZrB)>Ms(α-Fe+Fe12Si2ZrB-type)and Hc(α-Fe+α-Mn type)>Hc(α-Fe+Fe2B+ZrB)>Hc(α-Fe+Fe12Si2ZrB-type)>Hc(α-Fe),respectively.
作者
于万秋
卢利平
左斌
Yu Wanqiu;Lu Liping;Zuo Bin(School of Materials Science and Engineering,Changchun University of Science and Technology,Changchun 130022,China;National Demonstration Center for Experimental Physics Education,Jilin Normal University,Siping 136000,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2020年第5期1561-1566,共6页
Rare Metal Materials and Engineering
基金
National Natural Science Foundation of China(51301075)
Technology Studying Project of“13th five-year”Office of Education of Jilin Province(2017)。
关键词
FeZrB合金
初始晶化相
微观结构
饱和磁化强度
矫顽力
FeZrB alloys
primary crystallization phases
microstructure
saturation magnetization
coercivity