期刊文献+

一种基于数据融合的全轮驱动车辆质心侧偏角估计方法 被引量:7

Method for Estimating Sideslip Angle of All-wheel Drive Vehicle Based on Data Fusion
在线阅读 下载PDF
导出
摘要 为准确估计全轮电驱动车辆行驶状态参数,设计了一种基于数据融合的质心侧偏角估计方法。该方法充分利用低成本普通车载传感器信息、电机输入信息和驾驶信号,在建立非线性3自由度车辆模型和轮胎模型基础上,采用无迹卡尔曼滤波算法对质心侧偏角进行估计;同时通过信号积分法估计质心侧偏角,结合车辆行驶工况和路面条件,将无迹卡尔曼滤波和信号积分两种算法结果进行了数据融合。基于硬件在环实时仿真平台进行了车辆操纵仿真验证,结果表明,提出的估计算法与单一估计算法相比,具有更高的观测精度,能够满足多种行驶工况下的质心侧偏角观测需求。 A method for estimating sideslip angle based on data fusion is proposed to obtain the driving state parameters of all-wheel electric drive vehicle.On the basis of three-degree-of-freedom vehicle model and tire model,the method fully utilizes the information from a low-cost common vehicle-mounted sensor,in-wheel motor input information as well as driving signals,and the sideslip angle is estimated by using the unscented Kalman filter algorithm.Besides,the sideslip angle is estimated by signal integration method.Combined with vehicle driving conditions and road conditions,the estimated values of the unscented Kalman filtering algorithm and the signal integral algorithm are fused to obtain the final estimation of sideslip angle.A series of simulations were conducted on the hardware-in-the-loop real-time simulation platform.The results show that the proposed estimation algorithm has higher observation accuracy compared with the single estimation algorithm,which can meet the requirements of mass center sideslip angle observation under various driving conditions.
作者 张征 刘春光 马晓军 张运银 ZHANG Zheng;LIU Chunguang;MA Xiaojun;ZHANG Yunyin(Department of Weapons and Control Engineering, Army Academy of Armored Forces, Beijing 100072, China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2020年第5期842-849,共8页 Acta Armamentarii
基金 武器装备预先研究项目(301051102)。
关键词 全轮独立电驱动车辆 数据融合 质心侧偏角 无迹卡尔曼滤波 all-wheel independent drive electric vehicle data fusion mass center sideslip angle unscented Kalman filter
  • 相关文献

参考文献9

二级参考文献169

共引文献151

同被引文献50

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部