摘要
联合治理分区下PM2.5关联关系时空变异特征识别对中国大气污染防治意义重大.本文主要基于2000~2016年遥感反演的中国大陆334个地级市PM2.5浓度数据,利用空间单元聚合策略与地理时空加权回归技术,系统分析了大气污染联合治理分区视角下的中国PM2.5关联关系时空变异特征.结果表明:①以PM2.5为首要污染物,综合考虑污染程度、地理位置、气象、地形和经济等因素可将中国大陆地区划分为10个大气污染联合治理区.②地理时空加权回归能够有效刻画PM2.5与关联因素间的时空非平稳关系.同时,人口规模、第二产业生产总值、SO2排放量、年平均气温、年降水量以及年平均相对湿度被识别出对PM2.5浓度的变化影响存在显著时空差异.③人口规模对PM2.5浓度的影响程度各年最大的地区均为京津冀蒙区域;川渝滇黔区域中第二产业生产总值对PM2.5浓度影响程度变异度最大,在黑吉辽区域之外,SO2排放量回归系数值均先随时间逐渐减小再增大最后又减小;各治理区中年平均温度对PM2.5影响程度的时间变异程度较小;而年降水量与年平均相对湿度对PM2.5影响程度在各区域中呈现不同的变异特征.
Identification of spatio-temporal variation of PM2.5 related relationships under joint management zones is of great significance for scientifically conducting joint control of air pollution in China. Based on the PM2.5 concentration data of 334 prefecture-level cities in China from 2000 to 2016, from the perspective of air pollution regional linkage control and prevention, this paper systematically analyzes the spatio-temporal variation of PM2.5 related relationships in China using a spatial unit aggregation strategy and geographically and temporally weighted regression. The results show that: ① With PM2.5 as the primary pollutant, ten air pollution joint management areas are obtained by considering the degree of pollution, geographical location, meteorology, topography, and economy. ② Geographically and temporally weighted regression can effectively reveal the spatio-temporal non-stationarity of the relationships between PM2.5 concentration and related factors. Meanwhile, population size, secondary industry gross domestic product, SO2 emissions, annual average temperature, annual precipitation, and annual relative humidity are identified as having a significant effect on changes in PM2.5 concentration. ③ The population impacts on PM2.5 concentration in the Beijing-Tianjin-Yunmeng region are the largest of all regions during the period. The influence of the secondary industry’s gross domestic product on the PM2.5 concentration in the Sichuan-Yunnan District is the most variable. Apart from these values in the northeast of China, the regression coefficient values of SO2 emissions first decrease with time, then increase, and then decrease again. The time variability of the average annual temperature of each treatment area to PM2.5 is small. The influences of annual precipitation and annual average relative humidity on PM2.5 present different variability characteristics in each region.
作者
杨文涛
黄慧坤
魏东升
赵斌
彭焕华
YANG Wen-tao;HUANG Hui-kun;WEI Dong-sheng;ZHAO Bin;PENG Huan-hua(Department of Geographical Information Science,Hunan University of Science and Technology,Xiangtan 411201,China;National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology,Hunan University of Science and Technology,Xiangtan 411201,China;Department of Geological Engineering,Central South University,Changsha 410000,China;Department of Surveying and Mapping Engineering,Central South University of Forest and Technology,Changsha 410000,China)
出处
《环境科学》
EI
CAS
CSCD
北大核心
2020年第5期2066-2074,共9页
Environmental Science
基金
国家自然科学基金项目(41801311)
湖南省自然科学基金项目(2018JJ3150)。
关键词
细颗粒物
区域联合治理
遥感数据
时空变异性
地理时空加权回归模型
PM2.5
regional linkage control and prevention
remote sensing data
spatio-temporal variation
geographically and temporally weighted regression