期刊文献+

钻井过程人员异常行为视频智能识别系统 被引量:4

Video Intelligent Recognition System for Abnormal Behavior in Drilling Operations
在线阅读 下载PDF
导出
摘要 针对钻井现场视频监控人工值守工作量大、异常行为识别不及时、海量视频数据缺乏实时报警等问题,结合钻井作业操作规程建立井控坐岗监测、起下钻、甩钻具等钻井作业场景典型异常行为判别规则,在基于卷积神经网络的目标检测方法基础上,引入SIFT方法和基于强化学习的困难样本筛选策略,提高了算法识别的准确率与鲁棒性。测试结果表明,在像素分辨率1 920×1 080的情况下,该方法整体识别准确率达到85%以上,平均识别速度为135 ms/帧。在此基础上,开发了钻井过程人员异常行为智能识别系统,试点应用结果表明,该系统能够对接入的视频流进行实时检测,及时、准确识别出坐岗人员擅自离岗、起下钻及甩钻具过程人员危险站位等异常行为,有效提升钻井现场安全管理水平。 To solve the problems of heavy workload,untimely abnormal behavior recognition and lack of real-time alarm of video surveillance in drilling field,the recognition rules and detection methods of typical abnormal behavior in drilling operation scenarios were established in accordance with drilling operation procedures,concluding overflow sitting monitoring,tripping and lifting drilling strings. On the basis of convolutional neural network,SIFT method and reinforcement learning based difficult sample selection strategy were introduced into the target detection model to improve the accuracy and robustness. The test results showed that the recognition accuracy of the method was over 85% and the average recognition speed was 135 ms/frame under the condition of 1920 * 1080 pixel resolution. The video intelligent recognition system for abnormal behavior in drilling operations was developed. The application results showed that the system could perform the real-time video stream,accurately identify the abnormal behaviors mentioned above,which could effectively improve the safety management level of the drilling site.
作者 王文正 吴德松 李千登 Wang Wenzheng;Wu Desong;Li Qiandeng(SINOPEC Research Institute of Safety Engineering,Shandong,Qingdao,266071)
出处 《安全、健康和环境》 2020年第2期15-20,共6页 Safety Health & Environment
基金 国家重点研发计划(No.2018YFC0809300) 中国石化科技部项目资助。
关键词 钻井作业 异常行为识别 视频智能识别系统 目标检测方法 钻井安全管理 drilling operation abnormal behavior intelligent recognition video intelligent recognition system target detection method drilling safety management
  • 相关文献

参考文献9

二级参考文献66

  • 1丛飙,朱海鹰,严军.强化检维修施工作业风险管理 提高安全生产水平[J].石油化工安全技术,2006,22(5):15-16. 被引量:3
  • 2江志军,易华蓉.一种基于图像金字塔光流的特征跟踪方法[J].武汉大学学报(信息科学版),2007,32(8):680-683. 被引量:35
  • 3中国石油天然气集团公司工程技术与市场部,石油工程技术承包商协会.井喷事故案例汇编[M].北京:石油工业出版社,2006:4-190.
  • 4SCOTT G E. Working safety: how to help people actively care for health and safety[M].Boston: CRC Press, 1996: 20- 45.
  • 5STEWART J M. Future state visioning - a powerful leadership proeess[J].Long Range Planning, 1993, 26 (6) : 89-98.
  • 6冉丽君,刘茂.人群密度对人群拥挤事故的影响[J].安全与环境学报,2007,7(4):135-138. 被引量:37
  • 7PETERSON S K, MURTHA J A, ROBERTS R W. Drill- ing performance predictions: case studies illustrating the use of risk analysis[C] // paper 29364-MS presented at the SPE/IADC Drilling Conference, 28 February - 2 March 1995, Amsterdam, Netherlands. New York : SPE, 1995 : 305- 311.
  • 8GREEN A R. New technique in assessment mine risk[C]// Proceedings of 26Th International Conference of Safety in Mines Research Institutes. Katowice: Central Mining Insti- tute, 1995 : 195-201.
  • 9HALLOWELL R MATTttEW. A formal model for con- struction safety and health risk management[D]. Oregon: Oregon State University, 2008 : 31-36.
  • 10CHANGLI K, SOONYONG P. Fast stereo matching of feature links [ C ]//2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. Hangzhou : IEEE Computer Society, 2011 : 256-274.

共引文献123

同被引文献35

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部