期刊文献+

用户轨迹挖掘与可视化系统的研究与设计 被引量:1

The Research of User Trajectory Mining and Visualization System
在线阅读 下载PDF
导出
摘要 近年来,随着移动互联网应用的迅猛发展,用户可以很方便地获取个人位置信息,使用各种基于位置的服务(Location-based Services,LBS),将自己的移动过程以轨迹的形式进行记录.如何对产生的轨迹数据进行挖掘,已成为数据挖掘领域的一个研究热点.在完成对大量的轨迹数据的存储与处理之后,用户轨迹的可视化对于用户轨迹的分析无疑能够提供一个直观的研究环境,但是单纯的可视化和轨迹交换并未充分发掘出轨迹中隐藏的知识.基于此,该文从用户轨迹数据出发,进行用户轨迹数据的挖掘分析并通过JAVA技术实现可视化.此外,该文通过计算两个用户之间的相似度为用户推荐潜在的朋友,完成个性化朋友推荐. With the rapid development of mobile Internet applications,users can easily get personal location information by using a vari ety of location-based services(LBS),and record their movements in the form of trajectories.How to mine the rich data generated has be come a research area in the field of data mining.After storing and processing a large amount of trajectory data,the visualization of user trajectories can undoubtedly provide an intuitive research environment for the analysis of user trajectories.But pure visualization and trajectory exchange does not fully discover the hidden knowledge in the trajectory.The user trajectory mining and visualization is the main function implemented in this paper.System determines user habits,user preferences,and the similarities between two users to rec ommend potential friends to users and to complete personalized friend recommendations.
作者 孙瑜 王李冬 SUN Yu;WANG Li-dong(Qianjiang College,Hangzhou Normal University,Hangzhou 310018,China)
出处 《电脑知识与技术》 2020年第11期59-62,共4页 Computer Knowledge and Technology
基金 浙江省自然科学基金项目(LY19F020022) 杭州师范大学钱江学院科研项目“(面向实时交通信息的行车轨迹分析与路径规划研究)” 杭州市哲学社会科学规划课题基地项目(2018JD60)。
关键词 轨迹可视化 轨迹挖掘 基于位置的服务 trajectory visualization trajectory mining location-based services
  • 相关文献

参考文献4

二级参考文献37

  • 1王方雄,边馥苓.从GISystem到GIService:GISystem发展的必然趋势[J].华中师范大学学报(自然科学版),2004,38(4):528-532. 被引量:13
  • 2杨丰盛.Android应用开发揭秘[M].北京:机械工业出版社.2011.5.
  • 3Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 4Liu Q, Ge Y, Li Z, et al. Personalized travel package recommendation[C]// 2011 IEEE 11th International Conference on Data Mining. 2011:407-416.
  • 5Lu X, Wang C, Yang J M, et al. Photo2trip: Generating travel routes from geo-tagged photos for trip planning[C]// Proceedings of the International Conference on Multimedia. 2010:143-152.
  • 6Kisilevich S, Keim D, Rokach L. A novel approach to mining travel sequences using collections of geotagged photos[C]// Lecture Notes in Geoinformation and Cartography. 2010:163-182.
  • 7Ricci F. Travel recommender systems[J]. IEEE Intelligent Systems, 2002,17(6):55-57.
  • 8Liu J, Huang Z, Chen L, et al. Discovering areas of interest with geo-tagged images and check-ins[C]// Proceedings of the 20th ACM International Conference on Multimedia. 2012:589-598.
  • 9Arase Y, Xie X, Hara T, et al. Mining people’s trips from large scale geo-tagged photos[C]// Proceedings of the International Conference on Multimedia. 2010:133-142.
  • 10Yin Z, Cao L, Han J, et al. Diversified trajectory pattern ranking in geotagged social media[C]// Proceedings of the Eleventh SIAM International Conference on Data Mining. 2011:980-991.

共引文献22

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部