期刊文献+

结构化数据的隐私与数据效用度量模型 被引量:7

Privacy and data utility metric model for structured data
在线阅读 下载PDF
导出
摘要 针对隐私保护中数据隐私量和数据效用的量化问题,基于度量空间和范数基本原理提出了一种结构化数据隐私与数据效用度量模型。首先,给出数据数值化处理方法,将数据表转变为矩阵进行运算;其次,引入隐私偏好函数,度量敏感属性随时间的变化;然后,分析隐私保护模型,量化隐私保护技术产生的变化;最后,构建度量空间,给出了隐私量、数据效用和隐私保护程度计算式。通过实例分析,该度量模型能够有效反映隐私信息量。 Aiming at the quantification of data privacy and data utility in privacy protection,based on the basic principles of metric space and norm,this paper proposed a privacy and data utility metric model.First,it gave the data numerical processing method.And converted the data into a matrix for calculation.Secondly,it introduced a privacy preference function to measure the change of sensitive attributes over time.Then,it analyzed the privacy protection model and quantified the data changes generated by the privacy protection technology.Finally,this paper built a metric space,and gave privacy amount,data utility and privacy protection calculations.Simulation experiments show that the established metric model can effectively reflect the amount of private information.
作者 谢明明 彭长根 吴睿雪 丁红发 刘波涛 Xie Mingming;Peng Changgen;Wu Ruixue;Ding Hongfa;Liu Botao(College of Mathematics&Statistics,Guizhou University,Guiyang 550025,China;Guizhou Province Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China;College of Computer Science&Technology,Guizhou University,Guiyang 550025,China;Institute of Cryptography&Data Security,Guizhou University,Guiyang 550025,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第5期1465-1469,1473,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61662009,61772008) 国家“十三五”密码发展基金资助项目(MMJJ20170129) 贵州省科技计划资助项目(黔科合基础[2016]2315,黔科合基础[2017]1045,黔科合重大专项字[2017]3002,黔科合重大专项字[2018]3001)。
关键词 隐私保护 隐私度量 度量空间 隐私量 数据效用 privacy protection privacy metric metric space privacy amount data utility
  • 相关文献

参考文献7

二级参考文献54

  • 1赵克勤.集对分析对不确定性的描述和处理[J].信息与控制,1995,24(3):162-166. 被引量:152
  • 2Mokbel M F, Aref W G. PLACE: A scalable location- aware database Server for spatio-temporal data Streams EC~//Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2005 : 3-10.
  • 3Jochen S, Agne' s Voisaicl. Location-based services EM~. San Francisco: Morgan Kaufmann, Publishers, 2004: 115-148.
  • 4Gruteser M, Grunwald D. Anonymous usage of loca- tion based services through spatial and temporal cloa- king [C~//Proceedings of the 1st International Confer- ence on Mobile Systems, Applications, and Services ( MobiSys 2003 ). San Fransisco, 2003: 31-42.
  • 5Bettini C, Wang S X, Jajodia S. Protecting privacy a- gainst location-based personal identification [C~//Pro- ceedings of the 2nd VLDB Workshop on Secure Data Management ( SDM 2005). Trondheim, 2005= 185- 199.
  • 6Pan X, Meng X, Xu J. Distortion-based anonymity for.continuous queries in location based mobile services FC~//Proceedings of the 17th ACM SIGS PAT IAL International Conference on Advances in Geographic Information Systems. Washington, 2009= 256-265.
  • 7Mokbel M F, Chow C Y, Aref W G. The newspaper= Query processing for location services without compro- mising privacy EC~//Proceedings of the 32nd Confer- ence of Very Large Databases (VLDB 2006). Seoul, 2006: 763-774.
  • 8Sweeney L. K-anonymity= a model for Protecting Privacy [J]. International Journal of Uncertainty, Fuzziness and Knowledge-based System, 2002, 10(5): 557-570.
  • 9Ashwin M,Gehlke J, Johannes G, et al. I-diversity= Privacy beyond k-anonymity EC~// Proceedings of 22nd International Conference on Data Engineering ( ICDE. 07), Atlanta, Georgia, USA, 2007: 152-171.
  • 10Sampigethaya K, Huang L P, Li M Y, et al. CARA- VAN: providing location privacy for VANETEC~// Embedded Security in Cars (ES CAR), 2005~1-15.

共引文献312

同被引文献55

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部