期刊文献+

随机森林算法的立铣刀磨损状态评估 被引量:8

Evaluation of Wear Condition in End Milling Cutter with Random Forest Algorithm
在线阅读 下载PDF
导出
摘要 制造业自动化水平的提高对数控机床的自我诊断能力提出了新的要求,而人工智能的发展为此开辟了新的解决方案。为了更高效、全面地对刀具磨损状态进行评估,通过采集立铣刀切削时的力和加速度信号,并对其时域、频域与小波能量特征的信号的特征值进行提取,建立了一种基于随机森林算法(Random forest)的刀具磨损状态评估模型。实验数据的对比验证中,随机森林模型对107组测试样本的刀具磨损状态评估准确率达到99.1%,且其建立模型的时间少于1 s。结果表明,随机森林算法具有高效与高准确度的特点,能为刀具磨损状态的在线监测系统的建立奠定基础。 The new requirement for the self-diagnosis ability of CNC machine tools has been put forward in order to improve the manufacturing automation level,and the development of artificial intelligence has opened aiming at this purpose.In order to evaluate the tool wear state more efficiently and comprehensively,the force and acceleration signals in the end milling are collected.The eigenvalues of the time domain,frequency domain and wavelet energy of the signals are extracted.And a model for evaluating the tool wear state via Random Forest algorithm is established.In the comparative verification of the experimental data,the accuracy of the tool wear state of the 107 sets of test samples by using the random forest model is of 99.1%,and the time for establishing the model is below 1 s.The result shows that the random forest algorithm has the characteristics of high efficiency and high accuracy,which lays a foundation for establishing the online monitoring system for tool wear state.
作者 李凡 谢峰 李楠 Li Fan;Xie Feng;Li Nan(School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China)
出处 《机械科学与技术》 CSCD 北大核心 2020年第3期419-424,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 安徽省科技攻关项目(1301022079)资助。
关键词 机器学习 刀具磨损 特征提取 随机森林算法 machine learning wear of tool feature extraction random forest algorithm
  • 相关文献

参考文献6

二级参考文献99

  • 1雷小宝,廖文和,谢峰,郑侃,赵吉文.义齿用预烧结氧化锆高速铣削时刀具磨损及寿命预测[J].南京理工大学学报,2013,37(4):567-572. 被引量:7
  • 2崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91. 被引量:33
  • 3李锡文,杨明金,杜润生,杨叔子.模糊模式识别在铣刀磨损监测中的应用[J].机械科学与技术,2007,26(9):1113-1117. 被引量:4
  • 4KRAMER B M. A Comprehensive Tool Wear Model [ J ]. Annals of CIPP, 1986,35 ( 1 ) : 67 - 70.
  • 5DAN L, MATHEW J. Tool Wear and Failure Monitoring Techniques for Turning-A Review [ J ]. International Journal of Machine Tools and Manufacture, 1990,30:579 - 598.
  • 6BERNHARD Sick. On-line and Indirect Tool Wear Monito- ring in Turning with Artificial Neural Networks : A Review of More than a Decade of Research[ J]. Mechanical System and Signal Processing,2002,16 (4) :487 - 546.
  • 7ERKKI Jantunen. A Summary of Methods Applied to Tool Condition Monitoring in Drilling [ J ]. International Journal of Machine Tools & Manufacture,2002,42:997 - 1010.
  • 8TETI R, JEMIELNIAK K. Advanced Monitoring of Machi- ning Operations [ J]. CIRP Annals-Manufacturing Technolo- gy,2010,59:718.
  • 9DIMLA E, DIMLA Snr. Sensor Signals for Tool-wear Moni- toring in Metal Cutting Operations-a Review of Methods [ J ]. International Journal of Machine Tools & Manufac- ture, 2000,40 : 1073 - 1098.
  • 10CHOUDHARY S K, JAIN V K, RAMO Rao ChVV. On- line Monitoring of Tool Wear in Turning Using a Neural Network[ J ]. International Journal of Machine Tools and Manufacture, 1999,39 ( 3 ) :489 - 504.

共引文献70

同被引文献73

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部