期刊文献+

基于自适应变异的多目标鸽群优化的无人机目标搜索 被引量:8

An adaptive mutant multi-objective pigeon-inspired optimization for unmanned aerial vehicle target search problem
在线阅读 下载PDF
导出
摘要 无人机在搜索任务中起着关键的作用,它能够在复杂环境中寻找到目标.无人机搜索问题是一个相对复杂的多约束条件下的多目标优化问题.大多数搜索算法不能满足搜索过程中高效率和低功耗的要求.本文所采用的目标搜索方法是一种基于Agent路由和光传感器的解耦滚动时域方法.为了优化目标搜索方法的参数,本文提出一种基于Agent路由和光传感器的自适应变异多目标鸽群优化(AMMOPIO)算法.利用自适应飞行机制可以获得较好的鸽群分布,种群具有多样性和收敛性.利用变异机制简化了鸽群优化算法中的模型,提高了搜索效率.实验仿真结果验证了所提出的AMMOPIO算法在目标搜索问题中的可行性和有效性. Unmanned aerial vehicle(UAV) is an indispensable tool for search missions, which can help find targets in critical and complex environments. The search problem of UAVs is a rather intricate multiobjective optimization problem with multiple constraints under complicated conflict environment. Most search algorithms could not meet the requirements of high efficiency and low consumption in combat environment. The target search approach employed in this paper is a decoupling receding horizon approach based on the agent routing and optical sensor tasking. To optimize the parameters of the target search approach, an adaptive mutant multiobjective pigeon-inspired optimization(AMMOPIO) algorithm is proposed for agent routing and optical sensor tasking optimization of target search problem. The utilization of adaptive flight mechanism could obtain the distribution of pigeons with applicable diversity and convergence. The mutation mechanism is used to simplify the model of pigeon-inspired optimization(PIO) to improve the search efficiency. The experimental results validate the feasibility and effectiveness of the proposed AMMOPIO algorithm in target search problem.
作者 霍梦真 段海滨 HUO Meng-zhen;DUAN Hai-bin(Bio-inspired Autonomous Flight Systems Research Group,School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,China;Peng Cheng Laboratory,Shenzhen Guangdong 518000,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第3期584-591,共8页 Control Theory & Applications
基金 the National Natural Science Foundation of China(91648205).
关键词 目标搜索 多目标鸽群优化算法 自适应飞行机制 变异机制 target search multi-objective pigeon-inspired optimization adaptive flight mechanism mutation mechanism
  • 相关文献

参考文献2

二级参考文献19

  • 1ZHU XiaoYong1,2 & CHENG Ming1 1 Engineering Research Center for Motion Control of MOE,School of Electrical Engineering,Southeast University,Nanjing 210096,China,2 School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China.Design,analysis and control of hybrid excited doubly salient stator-permanent-magnet motor[J].Science China(Technological Sciences),2010,53(1):188-199. 被引量:16
  • 2刘小雄,章卫国,李广文,李爱军.无人机自主编队飞行控制的技术问题[J].电光与控制,2006,13(6):28-31. 被引量:29
  • 3Pietro S.Oliveto.Time Complexity of Evolutionary Algorithms for Combinatorial Optimization:A Decade of Results[J].International Journal of Automation and computing,2007,4(3):281-293. 被引量:5
  • 4WANG X H, YADAV V, BALAKRISHNAN S N. Cooperative UAV formation flying with obstacle/collision avoidance[J]. IEEE Transactions on Control System Technology,2007,15 (4) :672-679.
  • 5LAVRETSKY E,HOVAKIMYAN N,CALISE A,et al. Adaptive vortex seeking formation flight neuro control[ C ]//AIAA Guidance Navigation and Control Conference and Exhibit, :5726.
  • 6KEVICZKY T,BORRELLI F,BALAS G J. Decentralized re- ceding horizon control for large scale dynamically decoupled systems [ J ]. Automatica ,2006,42:2105-2115.
  • 7SPRY S, HEDRICK K. Formation control using general- ized coordinates [ C ]// The 43rd IEEE Conference on Decision and Control. Atlantis. 2004:2441-2446.
  • 8SCHOUWENAARS T, VALENTI M, FERON E, et al. Implementation and flight test results of MILP-based UAV guidance[ C ]//IEEE Aerospace Conference. 2005:1-13.
  • 9MAYNE D Q,RAWLINGS J B,RAO C V,et al. Constrained model predictive control : Stability and optimality [ J ]. Auto- matica,2000,36:789-814.
  • 10LIMON A,ALAMO T, SALAS F, et al. On the stability of constrained MPC without terminal constraint [ J ]. IEEE Transactions on Automatic Control, 2006, 51 ( 5 ) : 832- 836.

共引文献23

同被引文献70

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部